[1]鍾誌訓,氫氣工廠蒸汽重組爐操作參數數值模擬分析,國立虎尾科技大學航空與電子科技研究所碩士論文,中華民國108年6月。[2]Ylva Lindqvist, Optimizing the steam reformers at AkzoNobel, Master of Science Thesis within the Innovative and Sustainable Chemical Engineering Programme, Department of Chemical and Biological Engineering, Division of Chemical Engineering, Chalmers University of Technology, Göteborg, Sweden, 2013.
[3]Liu, K., Song, C., & Subramani, V., Hydrogen and Syngas Production and Purification Technologies. Hoboken: John Wiley & Sons, 2010.
[4]Liu, J. A., Kinetics, Catalysis and Mechanism of Methane Steam Reforming, Worcester Polytechnic Institute, Chemical Engineering Department, 2006.
[5]Joensen, F., & Rostrup-Nielsen, J. R., “Conversion of hydrocarbons and alcohols for fuel cells”, Journal of Power Sources, pp.195-201, March 2002.
[6]Sehested, J., “Four challenges for nickel steam-reforming catalysts”, Catalysis Today, Vol.111, No.1, pp.103-110, 2006.
[7]Brightling, J. (2002). “Managing steam reformer tubes”, Nitrogen & Methanol (256), 29. Cooper. (1998). Patent No. 5741440. United States.
[8]M. Taji, M. Farsi, P. Keshavarz, “Real time optimization of steam reforming of methane in an industrial hydrogen plant”, International Journal of Hydrogen Energy,Vol.43, pp.13110-13121, 2018.
[9]Marcin Pajak, Marcin Mozdzierz, Maciej Chalusiak, Shinji Kimijima,Janusz S. Szmyd, Grzegorz Brus, “A numerical analysis of heat and mass transfer processes in a macro-patterned methane/steam reforming reactor”, International Journal of Hydrogen Energy,Vol.43, pp.20474-20487, 2018.
[10]Ankur Kumar, Thomas F. Edgar, Michael Baldea, “Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field”, Computers and Chemical Engineering, Vol.107, pp.271-283, 2017.
[11]Lars J. Christiansen, “Use of modeling in scale-up of steam reforming technology”, Catalysis Today, Vol.272, pp.14-18, 2016.
[12]Ankur Kumar, Michael Baldea, Thomas F. Edgar, “Real-time optimization of an industrial steam-methane reformer under distributed sensing”, Control Engineering Practice, Vol.54, pp.140-153, 2016.
[13]E. M. Mokheimer, M. I. Hussain, S. Ahmed, M. A. Habib, A. A. Al-Qutub, “On the modeling of steam/methane reforming”, J. Energy Resour. Technol., 012001, 2015.
[14]Sajjad Rimaz and Davood Iranshahi, “A novel chemical looping combustion (CLC)-assisted catalytic naphtha reforming process for simultaneous carbon dioxide capture and hydrogen production enhancement”, Energy Fuels, Vol.29, pp.2022-2033, 2015.
[15]David M. Anderson, Peter A. Kottke, Andrei G. Fedorov, “Thermodynamic analysis of hydrogen production via sorption-enhanced steam methane reforming in a new class of variable volume batch-membrane reactor”, International Journal of Hydrogen Energy, Vol.39, pp.17985-17997, 2014.
[16]Meng Ni, “2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer”, Energy Conversion and Management, Vol.65, pp.155-163, 2013.
[17]M. E. E. Abashar, “Modeling and simulation of circulating fast fluidized bed reactors and circulating fast fluidized bed membrane reactors for production of hydrogen by oxidative reforming of methane”, International Journal of Hydrogen Energy, Vol.37, pp.7521-7537, 2012.
[18]Guangming Zeng, Ye Tian, Yongdan Li, “Thermodynamic analysis of hydrogen production for fuel cell via oxidative steam reforming of propane”, International Journal of Hydrogen Energy, Vol.35, pp.6726-6737, 2010.
[19]C. Ventura, J. L. T. Azevedo, “Development of a numerical model for natural gas steam reforming and coupling with a furnace model”, International Journal of Hydrogen Energy, Vol.35, pp.9776-9787, 2010.
[20]M. de Jong, A. H. M. E. Reinders, J. B. W. Kok, G. Westendorp, “Optimizing a steam-methane reformer for hydrogen Production”, International Journal of Hydrogen Energy, Vol.34, pp.285-292, 2009.
[21]A. Zamaniyan, A.T. Zoghi, H. Ebrahimi, “Software development for design and simulation of terraced wall and top fired primary steam reformers”, Computers and Chemical Engineering, Vol.32, pp.1433-1446, 2008.
[22]Agostino Olivieri, Francesco Vegliò, “Process simulation of natural gas steam reforming: Fuel distribution optimization in the furnace”, Fuel Processing Technology, Vol.89, pp.622-632, 2008.
[23]Sepehr Sanaye, Ehsan Baheri, “Thermal modeling of radiation and convection sections of primary reformer of ammonia plant”, Applied Thermal Engineering, Vol.27, pp.627-636, 2007.
[24]M. Naib, F. Tadeo, and A. Benzaouia, “Control of Systems with Asymmetric Bounds Using Linear Programming: Application to a Hydrogen Reformer”, Mathematical Problems in Engineering, Article ID 19092, pp.1-13, DOI 10.1155/MPE/2006/19092, 2006.
[25]Lars Nummedal, Audun Røsjorde, Eivind Johannessen, Signe Kjelstrup, “Second law optimization of a tubular steam reformer”, Chemical Engineering and Processing, Vol.44, pp.429-440, 2005.
[26]Dmitry Pashchenko, “Effect of the geometric dimensionality of computational domain on the results of CFD modeling of steam methane reforming”, International Journal of Hydrogen Energy,Vol.43, pp.8662-8673, 2018.
[27]Xiaoti Cui, Søren Knudsen, Kær, “Two-dimensional thermal analysis of radial heat transfer of monoliths in small-scale steam methane reforming”, International Journal of Hydrogen Energy, Vol.43, pp.11952-11968, 2018.
[28]Tran, A.; Aguirre, A.; Durand, H.; Crose, M.; Christofides, P.D. CFD modeling of an industrial-scale steam methane reforming furnace. Chem. Eng. Sci. 2017, 171, 576–598.
[29]L. Lao, A. Aguirre, A. Tran, Z. Wu, H. Durand, P. D. Christofides, “CFD modeling and control of a steam /methane reforming reactor”, Chem. Eng. Sci., Vol.148, pp.78-92, 2016.
[30]Diego Rúa, Liliana Hernández, “Phenomenological evaluation of industrial reformers for glycerol steam reforming”, International Journal of Hydrogen Energy, Vol.41, pp.13811-13819, 2016.
[31]Hadi Ebrahimi, Akbar Zamaniyan, Reza Hosseini, Khaled Forsat, “Analysis of reformer furnace tubes for hydrogen production using radiative zonal model”, International Journal of Hydrogen Energy, Vol.39, pp.13164-13173, 2014.
[32]Z. Arab Aboosadi, A.H. Jahanmiri, M.R. Rahimpour, “Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method”, Applied Energy, Vol.88, pp.2691-2701, 2011.
[33]Dezhi Zheng, Bin Wu, Jeff Fleitz, Robert Trajkovski and Chenn Q. Zhou, “CFD simulation of a hydrogen reformer furnace”, Proceedings of the 14th International Heat Transfer Conference IHTC14, August 8-1, Washington, DC, USA, IHTC14-231213, 2010.
[34]Dezhi Zheng, Song Zhang, Bin Wu, Jeff Fleitz, Robert Trajkovski and Chenn Q. Zhou, “CFD investigation of a hydrogen reformer furnace for improved flow distribution”, Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition IMECE2010, November 12-18, Vancouver, British Columbia, Canada, IMECE2010-40846, 2010.
[35]Ping Zhou, Bin Wu, Yuzhu Hu, Dezhi Zheng, Jeff Fleitz, Robert Trajkovski and Chenn Q. Zhou, “CFD study for air distribution in hydrogen reformer furnace”, Proceedings of the ASME 2009 Heat Transfer Summer Conference HT2009, San Francisco, California USA, HT2009-88620, July 19-23, 2009.
[36]Jamshid Behin, Hamid Reza Kavianpour, “A comparative study for the simulation of industrial naphtha reforming reactors with considering pressure drop on catalyst”, Petroleum & Coal, Vol.51, No.3, pp.208-215, 2009.
[37]Hadi Ebrahimi, Jafar S. Soltan Mohammadzadeh, Akbar Zamaniyan, Flora Shayegh, “Effect of design parameters on performance of a top fired natural gas reformer”, Applied Thermal Engineering, Vol.28, pp.2203-2221, 2008.
[38]Ashok S. Damle, “Hydrogen production by reforming of liquid hydrocarbons in a membrane reactor for portable power generation—model simulations”, Journal of Power Sources, Vol.180, pp.516-529, 2008.
[39]Wang Shuyan, Yin Lijie, Lu Huilin, He Yurong, Jianmian Ding, Liu Guodong, Li Xiang, “Simulation of effect of catalytic particle clustering on methane steam reforming in a circulating fluidized bed reformer”, Chemical Engineering Journal, Vol.139, pp.136-146, 2008.
[40]Anthony G. Dixon, M. Ertan Taskin, E. Hugh Stitt, Michiel Nijemeisland, “3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients”, Chemical Engineering Science, Vol.62, pp.4963-4966, 2007.
[41]Zunhong Yu, Enhong Cao, Yifei Wang, Zhijie Zhou, Zhenghua Dai, “Simulation of natural gas steam reforming furnace”, Fuel Processing Technology, Vol.87, pp.695-704, 2006.
[42]Y. S. Seo, D. J. Seo, Y. T. Seo, W. L. Yoon, “Investigation of the characteristics of a compact steam reformer integrated with a water-gas shift reactor”, J. Power Sources, Vol.161, pp.1208-1216, 2006.
[43]J. Piña and D. O. Borio, “Modeling and simulation of an autothermal reformer”, Latin American applied research, Vol.36, No.4, pp.289-294, 2006.
[44]Michiel Nijemeisland, Anthony G. Dixon, E. Hugh Stitt, “Catalyst design by CFD for heat transfer and reaction in steam reforming”, Chemical Engineering Science, Vol.59, pp.5185-5191, 2004.
[45]Per Nielsen and Lars J. Christiansen, “CFD simulation of the sidewall fired tubular reforming furnace”, Proceedings of PVP2002, 2002 ASME Pressure Vessels and Piping Conference, Vancouver, BC, Canada, PVP2002-1601, August 5-9, 2002.
[46]Sverre Grevskott, Torgeir Rusten, Magne Hillestad, Emil Edwin, Ola Olsvik, “Modelling and simulation of a steam reforming tube with furnace”, Chemical Engineering Science, Vol.56, pp.597-603, 2001.
[47]Seyyed Mohammad Jokar, Mohammad Reza Rahimpour, Alireza Shariati, Adolfo Iulianelli, Giuseppe Bagnato, Antonio Vita, Francesco Dalena and Angelo Basile, “Pure hydrogen production in membrane reactor with mixed reforming reaction by utilizing waste gas: a case study”, Processes, Vol. 4, No.33; doi:10.3390/pr4030033, 2016.
[48]R. Soltani, M.A. Rosen, I. Dincer, “Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production”, International Journal of Hydrogen Energy, Vol.39, pp.20266-20275, 2014.
[49]Mohsen Abbasi, Mahdi Farniaei, Mohammad Reza Rahimpour, and Alireza Shariati, “Enhancement of hydrogen production and carbon dioxide capturing in a novel methane steam reformer coupled with chemical looping combustion and assisted by hydrogen perm-selective membranes”, Energy & Fuels, Vol.27, pp.5359-5372, 2013.
[50]Mohamed A. Al-Nakoua, Muftah H. El-Naas, “Combined steam and dry reforming of methane in narrow channel reactors”, International Journal of Hydrogen Energy, Vol.37, pp.7538-7544, 2012.
[51]Hyun-Seog Roh, Deuk Ki Lee, Kee Young Koo, Un Ho Jung, Wang Lai Yoon, “Natural gas steam reforming for hydrogen production over metal monolith catalyst with efficient heat-transfer”, International Journal of Hydrogen Energy, Vol.35, pp.1613-1619, 2010.
[52]Z. Al-Hamamre, S. Voß, D. Trimis, “Hydrogen production by thermal partial oxidation of hydrocarbon fuels in porous media based reformer”, International Journal of Hydrogen Energy, Vol.34, pp.827-832, 2009.
[53]Aitor Arregi, Itsaso Barbarias, Jon Alvarez, Aitziber Erkiaga, Maite Artetxe, Maider Amutio, Martin Olazar, “Hydrogen production from biomass pyrolysis and in-line catalytic steam reforming”, Chemical Engineering Transactions, Vol.43, pp.547-552, 2015.
[54]M.R. Rahimpour, R. Vakili, E. Pourazadi, D. Iranshahi, K. Paymooni, “A novel integrated, thermally coupled fluidized bed configuration for catalytic naphtha reforming to enhance aromatic and hydrogen productions in refineries”, International Journal of Hydrogen Energy, Vol.35, pp.2979-2991, 2011.
[55]D. Iranshahi, E. Pourazadi, K. Paymooni, M.R. Rahimpour, “Enhancement of aromatic production in naphtha reforming process by simultaneous operation of isothermal and adiabatic reactors”, International Journal of Hydrogen Energy, Vol.36, pp.2076-2085, 2011.
[56]Mohammad A. Rakib, John R. Grace, C. Jim Lim, Said S.E.H. Elnashaie, “Steam reforming of heptane in a fluidized bed membrane reactor”, Journal of Power Sources, Vol.195, pp.5749-5760, 2010.
[57]Mohammad A. Rakib, John R. Grace, C. Jim Lim, Said S. E. H. Elnashaie, Bahman Ghiasi, “Steam reforming of propane in a fluidized bed membrane reactor for hydrogen production”, International Journal of Hydrogen Energy, Vol.35, pp.6276-6290, 2010.
[58]S. T. Yong, K. Hidajat, S. Kawi, “Reaction study of auto thermal steam reforming of methanol to hydrogen using a novel nano CuZnAl-catalyst”, Journal of Power Sources, Vol.131, pp.91-95, 2004.
[59]James V. Leta, Thomas R. Dirham, Jonathan Dobis, P.E., Ruohua Guo, Lionel Roberts, “A probabilistic approach to fired heater tube remaining life assessments”, Proceedings of the ASME 2015 Pressure Vessels and Piping Conference (PVP2015), Boston, Massachusetts, USA, PVP2015-45427, July 19-23, 2015.
[60]H. M. Tawancy, “Damage analysis of catalyst tube of a reformer furnace used in hydrogen production”, Metallography, Microstructure, and Analysis, Vol.1, pp.199-207, 2012.
[61]M. Garbiak, W. Jasiński, B. Piekarski, “Materials for reformer furnace tubes: history of evolution”, Archives of Foundry Engineering, Vol.11, Special Issue 2, pp.47-52, 2011.\
[62]C. J. Liu, Y. Chen, “Variations of the microstructure and mechanical properties of HP40Nb hydrogen reformer tube with time at elevated temperature”, Materials and Design, Vol.32, pp.2507-2512, 2011.
[63]Ashok Kumar Ray, Sudheer Kumar, Guguloth Krishna, Manoj Gunjan, B. Goswami, Samir Chandra Bose, “Microstructural studies and remnant life assessment of eleven years service exposed reformer tube”, Materials Science and Engineering: A, Vol.529, pp.102-112, 2011.
[64]Antonello Alvino, Daniela Lega, Francesco Giacobbe, Vittorio Mazzocchi, Antonio Rinaldi, “Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions”, Engineering Failure Analysis, Vol.17, pp.1526-1541, 2010.
[65]Jaganathan Swaminathan, Krishna Guguloth, Manojkumar Gunjan, Prabirkumar Roy, Rabindranath Ghosh, “Failure analysis and remaining life assessment of service exposed primary reformer heater tubes”, Engineering Failure Analysis, Vol.15, pp.311-331, 2008.
[66]Chris Maharaj, Clément A.C. Imbert, John Dear, “Failure analysis and creep remaining life of hydrogen reformer outlet pigtail tubes”, Engineering Failure Analysis, Vol.15, pp.1076-1087, 2008.
[67]張銘坤、黃建仁、蔡隆昌,“鍋爐水牆管高溫潛變之特性研究”,工業安全科技,pp.31-38, 2006.
[68]F. R. Larson and J. Miller, “A Time-Temperature Relationship for Rupture and Creep Stresses”, Trans. ASME, Vol.74, pp.174, 1952.
[69]Ashok Kumar Ray, Samarendra Kumar Sinha, Yogendra Nath Tiwari, Jagannathan Swaminathan, Gautam Das, Satyabrata Chaudhuri, Raghubir Singh, “Analysis of failed reformer tubes”, Engineering Failure Analysis, Vol.10, pp.351-362, 2003.
[70]A. K. Ray, Y. N. Tiwari, R. K. Sinha, P. K. Roy, and S. K. Sinha, “Remnant life assessment of service-exposed pendent superheater tubes”, Engineering Failure Analysis, vol.9, pp.83-92, 2002.
[71]郭晉全,“鍋爐管材潛變殘餘壽命評價之研究”, 逢甲大學機械系碩士論文,2000.[72]Kouichi Maruyama, Isamu Nonaka, Kota Sawada, Hiroyuki Sato, Jun-ichi Koike, and Hideo Umaki,“Improvement of omega method for creep life prediction”, ISIJ International, Vol.37(4), pp.419-423, 1997.
[73]Jian-Ming Gong, Shan-Tung Tu, Kee-Bong Yoon, “Damage assessment and maintenance strategy of hydrogen reformer furnace tubes”, Engineering Failure Analysis, Vol.6, pp.143-153, 1999.
[74]I. Le May, T. L. da Silveira and C.H. Vianna, “Criteria for the evaluation of damage and remaining life in reformer furnace tubes”, Int. J. Pres. Ves. & Piping, Vol.66, pp.233-241, 1996.
[75]ANSYS, Inc., ANSYS FLUENT 17 Theory Guide, 2015.
[76]S. V. Patankar, Numerical Heat Transfer and Fluid Flows, McGraw-Hill, New York, 1980.
[77]B. F. Magnussen and B. H. Hjertager. “On mathematical models of turbulent combustion with special emphasis on soot formation and combustion”, In 16th Symp. (Int’l.) on Combustion, The Combustion Institute, 1976.
[78]G. K. Batchelor, An introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, England, 1967.
[79]B. E. Launder and D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, London, England, 1972.
[80]A. Bejan, Convection Heat Transfer, John Wiley and Sons, New York, 1984.
[81]Raithby, G. D., Chui, E. H., “A finite-volume method for predicting a radiant heat transfer in enclosures with participating media”, J Heat Trans-T ASME, Vol.112, pp.415-423, 1990.
[82]S. Ergun, A. A. Orning, “Fluid flow through randomly packed columns and fluidized beds”, Indust. Eng. Chem., Vol.41, pp.1179-1184, 1949.
[83]莊東漢,材料破損分析,五南圖書出版股份有限公司,台北市,台灣,2007。
[84]V. J. Colangelo and F. A. Heiser, Analysis of Metallurgical Failures (2nd ed.), Fig. 4.32, pp. 87, John Wiley and Sons, Inc., 1987.
[85]X. Iltis, N. Gey, C. Cagna, A. Hazotte and Ph. Sornay, “Microstructural evolution of uranium dioxide following compression creep tests: An EBSD and image analysis study”, Journal of Nuclear Materials, Vol.456, pp.426-435, 2015.
[86]https://www.rmg.co.id/MANAURITEXM.pdf, Manoir Industries – 12 rue des Ardennes – BP 8401 – Pîtres – 27108 VAL DE REUIL Cedex – France.