|
[1] 林福銘,太陽光電技術發展與推動現況,工研院綠能與環境研究所, 2019。 [2] 雷湧泉,李源弘,新能源材料,新文京開發出版,書號 A267,2004。 [3] 郭明村,薄膜太陽電池發展近況,工業材雜誌,203 期,150,2003。 [4] 陳祉雲,李玉郎,染料敏化太陽能電池,科學發展,564 期,2019。 [5] J. Braz. Chem. Soc, “Dye-Sensitized Solar Cells: A Successful Combination of Materials,’’ ISSN.1678-4790, vol.14, n.6, pp.898-901, 2003. [6] K. E. Lee, M. A. Gomez, S. Elouatik, G. P. Demopoulos, “Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging,” Langmuir 2010, 26, 12, pp. 9575–9583, 2010. [7] S. E. Koops, B. C. O’Regan, P. R. F. Barnes, J. R. Durrant, “Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells,” J. Am. Chem. Soc, 131, 13, pp. 4808–4818, 2009. [8] U. Diebold, “The surface science of titanium dioxide,” Volume 48, Issues 5–8, pp. 53-229, 2003. [9] M. Pawar ,S. T. Sendoğdular, P. Gouma, “A Brief Overview of TiO2 Photocatalyst for Organic Dye Remediation: Case Study of Reaction Mechanisms Involved in CeTiO2 Photocatalysts System,” Journal of Nanomaterials, 2018. [10] R. Ren, Z. Yang, L. L. Shaw, “Polymorphic transformation and powder characteristics of TiO2 during high energy milling,” Journal of Materials Science, vol. 35, pp.6015–6026, 2000. [11] H. A. Wriedt, J. L. Murray, “The N-Ti (Nitrogen-Titanium) system,” Bulletin of Alloy Phase Diagrams volume 8, pp. 378–388, 1987. [12] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, no. 5358, pp. 37-38, 1972. [13] Y. Zhang, M. K. Ram, E. K. Stefanakos, and D. Y. Goswami, “Synthesis, characterization, and applications of ZnO nanowires,” Journal of Nanomaterials, Article ID 624520, pp. 22, 2012. [14] M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chemical Reviews, vol. 93, no. 1, pp. 341–357, 1993. [15] J.Lee, P. I. Gouma, “Sol-Gel Processed Oxide Photocatalysts,” Sol-Gel Processing for Conventional and Alternative Energy , pp. 217-237, 2012. [16] A. L. Linsebigler, G. Lu, and J. T. Yates Jr, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results,” Chemical Reviews, vol. 95, no. 3, pp. 735–758, 1995. [17] K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 photocatalysis: a historical overview and future prospects,” Japanese Journal of Applied Physics, vol. 44, no. 12, pp. 8269–8285, 2005. [18] V. Subramanian, E. E. Wolf, and P. V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration,” Journal of the American Chemical Society, vol. 126, no. 15, pp. 4943–4950, 2004. [19] W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics,” The Journal of Physical Chemistry, vol. 98, no. 51, pp. 13669–13679, 1994. [20] J.-C. G. Bünzli and C. Piguet, “Taking advantage of luminescent lanthanide ions,” Chemical Society Reviews, vol. 34, no. 12, pp. 1048–1077, 2005. [21] Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, and S. Cai, “Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes,” Thin Solid Films, vol. 349, no. 1-2, pp. 120–125, 1999. [22] Y. Wang, H. Cheng, Y. Hao et al., “The photoelectrochemistry of Nd3+-doped TiO2 nanocrystalline electrodes,” Journal of Materials Science Letters, vol. 18, no. 2, pp. 127–129, 1999. [23] H. Kamisaka, T. Adachi, and K. Yamashitaa, “Theoretical study of the structure and optical properties of carbon-doped rutile and anatase titanium oxides,” J. Chem. Phys., vol. 123, no. 8, pp. 084704–084713, Aug. 2005. [24] H. Wang and J. P. Lewis, “Second-generation photocatalytic materials: Aniondoped TiO2,” J. Phys., Condens. Matter, vol. 18, no. 2, pp. 421– 434, Dec. 2006. [25] S. Satapathi et al., “Performance enhancement of dye-sensitized solar cells by incorporating graphene sheets of various sizes,” Appl. Surf. Sci., vol. 314, pp. 638– 641, Sep. 2014. [26] G. D. Sharma et al., “Enhancement of power conversion efficiency of dyesensitized solar cells by co-sensitization of zinc-porphyrin and thiocyanate-free ruthenium(II)-terpyridine dyes and graphene modified TiO2 photoanode,” RSC Adv., vol. 3, no. 4, pp. 22412–22420, Sep. 2013. [27] N. Yang, J. Zhai, D. Wang, Y. Chen, and L. Jiang, “Two-dimensional graphene bridges enhanced photoinduced charge transport in dyesensitized solar cells,” ACS Nano vol. 4, no. 2, pp. 887–894, Jan. 2010. [28] T.-H.Tsai,S.-C.Chiou,andS.-M.Chen,“Enhancement of dye-sensitized solar cells by using graphene-TiO2 composites as photoelectrochemical working electrode,” Int. J. Electrochem. Sci. vol. 6, no. 8, pp. 3333–3343, 2011. [29] M. Zhu, X. Li, W. Liu, and Y. Cui, “An investigation on the photoelectrochemical properties of dye-sensitized solar cells based on graphene– TiO2 composite photoanodes,” J. Power Sources, vol. 262, pp. 349–355, 2014. [30] L. Liu et al., “Titanium dioxide/graphene anode for enhanced chargetransfer in dye-sensitized solar cell,” Synthetic Metals, vol. 222, pp. 219– 223, 2016. [31] T. H. Chowdhury et al., “Prospects of graphene as a potential carriertransport material in third-generation solar cells,” Chem. Rec., vol. 16, no. 2, pp. 614–632, 2016. [32] J. Chang et al., “Hierarchical titania mesoporous sphere/graphene composite, synthesis and application as photoanode in dye sensitized solar cells,” J. Colloid Interface Sci., vol. 394, pp. 231–236, 2013. [33] A. K. Geim, K. S. Novoselov, “The rise of graphene, ” Nat. Mater. 6, pp. 183, 2007. [34] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, ‘‘Electric field effect in atomically thin carbon films,” Science 306, pp. 666, 2004. [35] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, ‘‘Graphene-based composite materials,” Nature 442, pp. 282, 2006. [36] M. I. Katsnelson, “Graphene: carbon in two dimensions,” Mater. Today 10, pp. 20, 2007. [37] D. Li, R. B. Kaner, “Graphene-Based Materials,” Science 320, pp. 1170, 2008. [38] A. Kongkanand, R. MartinezDominguez, P. V. Kamat, “Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons,” Nano Lett. 7, pp. 676, 2007. [39] G. Williams, B. Seger, R. V. Kamat, “TiO2-Graphene Nanocomposites. UVAssisted Photocatalytic Reduction of Graphene Oxide,” ACS Nano 2, pp.1487, 2008. [40] A. Imbrogno, R. Pandiyan, A. Macario, A. Bonanno, A. E. Khakani, “Optimizing Dye Adsorption in Graphene–TiO2 Photoanodes for the Enhancement of Photoconversion Efficiency of DSSC Devices,” IEEE Journal of Photovoltaics, vol. 9, no. 5, 2019. [41] Y. Kusumawati, M. A. Martoprawiro, and Th. Pauporté, “Effects of Graphene in Graphene/TiO2 Composite Films Applied to Solar Cell Photoelectrode,” J. Phys. Chem. C 118, pp. 9974, 2014. [42] J. Kim, B. Lee, Y. J. Kim, S. W. Hwang, “Enhancement of Dye‐sensitized Solar Cells Efficiency Using Graphene Quantum Dots as Photoanode,” Article, 2018. [43] G. Rajendera, P. K. Giri, “Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy,” Issue 46, 2016. [44] R. Ghayoor, A. Keshavarz, M. N. S. Rad, A. Mashreghi , “Enhancement of photovoltaic performance of dye-sensitized solar cells based on TiO2-graphene quantum dots photoanode,” Published 7, 2018. [45] I. Mihalache, A. Radoia, M. Mihaila, C. Munteanu, A. Marin, M. Danila, M. Kusko, C. Kusko, “Charge and energy transfer interplay in hybrid sensitized solar cells mediated by graphene quantum dots,” journal, Volume 153, 20, pp. 306-315, 2015. [46] X. Fang, M. Li, K. Guo, J. Li, M. Pan, L. Bai, M. Luoshan, X. Zhao, “Graphene quantum dots optimization of dyesensitized solar cells,” Journal, Volume 137, 10, pp. 634-638, 2014. [47] F. Jahantigh, S.M. B. Ghorashi, A. Bayat, “Hybrid dye sensitized solar cell based on single layer graphene quantum dots,” Journal, Volume 175, pp. 108118, 2020. [48] H. F. Etefa, T. Imae, M. Yanagida, “Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells,” ACS Appl. Mater. Interfaces 2020, 12, 16, pp. 18596–18608, 2020. [49] F. Jahantigh, S. M. B. Ghorashi, S. Mozaffari , “Orange photoluminescent Ndoped graphene quantum dots as an effective co-sensitizer for dye-sensitized solar cells,” Journal of Solid State Electrochemistry volume 24, pp. 883–889, 2020. [50] W. Ghann, V. Sharma, H. Kang, F. Karim, B. Richards, S. M. Mobin, J. Uddin, M. M.Rahman, F. Hossain, H. Kabir, N. Uddin , “The synthesis and characterization of carbon dots and their application in dye sensitized solar cell,” Journal, Volume 44, Issue 29, 7, pp. 14580-14587, 2019. [51] R. Riaz,M. Ali,T. Maiyalagan,A. S. Anjum,S. Lee,M. J. Ko,S. H. Jeong , “Dyesensitized solar cell (DSSC) coated with energy down shift layer ofnitrogen-doped carbon quantum dots (N-CQDs) for enhanced currentdensity and stability,” Journal, Volume 483, 31, pp. 425-431, 2019. [52] H. F. Etefa, T. Imae, M. Yanagida , “Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells,” ACS Appl. Mater. Interfaces, 12, 16, pp. 18596–18608, 2020. [53] I. Mora‐Seró, D. Gross, T. Mittereder, A. A. Lutich, A. S. Susha, T. Dittrich, A. Belaidi, R. Caballero, F. Langa, J. Bisquert, A. L. Rogach , “Nanoscale Interaction Between CdSe or CdTe Nanocrystals and Molecular Dyes Fostering or Hindering Directional Charge Separation,” smll, 2010. [54] 林宇倩,”不同形狀的金奈米粒子應用於染料敏化太陽能電池光電極之研究”,國立虎尾科技大學電子工程研究所碩士論文,2010。 [55] M. Grätzel, “Photoelectrochemical cells”, Nature, 414, pp. 338-344, 2001. [56] 楊榮川,”金屬材料”,五南圖書出版,2002。 [57] 謝倩芳,”製備零維與一維之金奈米材料及奈米金粒子在多孔二氧化鈦上 特性之研究”,中原大學化學系碩士論文,2006。 [58] 阿爾貝特‧斯特沃特加(Albert Stwertka),”化學元素”,世潮出版, 2004。 [59] 吳民耀、劉威志,”表面電漿子理論與模擬”,物理雙月刊,二十八卷, 二期,頁 486 ~ 496,2006。 [60] 紀傑元,”晶種成長法合成一維金奈米棒與性質分析之探討”,國立交通 大學材料科學與工程研究所碩士論文,2007。 [61] Xing-Xia Zhang et al., “Chinese Journal of Spectroscopy Laboratory”, 22, pp. 457 ~ 460, 2005. [62] 邱國斌、蔡定平,” 金屬表面電漿簡介”,物理雙月刊,二十八卷,二 期,頁 472 ~ 485,2006。 [63] 曾光榮,”有機染料共敏化於染料敏化太陽能電池之研究”,明志科技大 學化工與材料工程研究所,2011。 [64] 林泉融,”製備二氧化鈦緻密層以改善染料敏化太陽能電池(DSSCs)之光 電轉換效率”,國立聯合大學光電工程學系碩士論文,2011。 [65] 康子鴻,”利用電泳法製備多層奈米二氧化鈦薄膜及散射層應用於染料敏 化太陽能電池之研究”,國立虎尾科技大學光電與材料科技研究所碩士論文, 2010。 [66] 曾光榮,”有機染料共敏化於染料敏化太陽能電池之研究”,明志科技大 學化工與材料工程研究所,2011。 [67] 陳昇卲,”含微孔性陶瓷膜於染料敏化太陽能電池性能之研究”,長庚大 學化工與材料工程學系碩士論文,2010。
|