|
[1]Redmon, J., et al. You Only Look Once: Unified, Real-Time Object Detection. 2015. arXiv:1506.02640 DOI: 10.48550/arXiv.1506.02640. [2]Bochkovskiy, A., C.-Y. Wang, and H.-Y.M. Liao YOLOv4: Optimal Speed and Accuracy of Object Detection. 2020. arXiv:2004.10934 DOI: 10.48550/arXiv.2004.10934. [3]Redmon, J. and A. Farhadi YOLOv3: An Incremental Improvement. 2018. arXiv:1804.02767 DOI: 10.48550/arXiv.1804.02767. [4]Wang, C.-Y., A. Bochkovskiy, and H.-Y.M. Liao YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. 2022. arXiv:2207.02696 DOI: 10.48550/arXiv.2207.02696. [5]He, K., et al. Deep Residual Learning for Image Recognition. 2015. arXiv:1512.03385 DOI: 10.48550/arXiv.1512.03385. [6]Krause, J., et al., 3D Object Representations for Fine-Grained Categorization. 2013 IEEE International Conference on Computer Vision Workshops, 2013: p. 554-561. [7]Liu, Y. Car-Recognition. 2018; Available from: https://github.com/foamliu/Car-Recognition. [8]Huang, G., et al. Densely Connected Convolutional Networks. 2016. arXiv:1608.06993 DOI: 10.48550/arXiv.1608.06993. [9]Liu, H.Y., et al., Deep Relative Distance Learning: Tell the Difference Between Similar Vehicles. 2016 Ieee Conference on Computer Vision and Pattern Recognition (Cvpr), 2016: p. 2167-2175. [10]Marín-Reyes, P.A., et al., Unsupervised Vehicle Re-Identification using Triplet Networks. 2018. [11]Zhang, C., et al., A car-face region-based image retrieval method with attention of SIFT features. Multimedia Tools and Applications, 2016. 76(8): p. 10939-10958. [12]He, B., et al., Part-regularized Near-duplicate Vehicle Re-identification. 2019 Ieee/Cvf Conference on Computer Vision and Pattern Recognition (Cvpr 2019), 2019: p. 3992-4000. [13]Khorramshahi, P., et al. A Dual-Path Model With Adaptive Attention For Vehicle Re-Identification. 2019. arXiv:1905.03397 DOI: 10.48550/arXiv.1905.03397. [14]Meng, D., et al., Fine-grained Feature Alignment with Part Perspective Transformation for Vehicle ReID. Proceedings of the 28th ACM International Conference on Multimedia, 2020. [15]Zheng, Z., et al., VehicleNet: Learning Robust Visual Representation for Vehicle Re-identification. 2020. p. arXiv:2004.06305. [16]Ma, X.R. and A. Boukerche, An AI-based Visual Attention Model for Vehicle Make and Model Recognition. 2020 Ieee Symposium on Computers and Communications (Iscc), 2020: p. 436-441. [17]Yu, Y., et al., CAM: A fine-grained vehicle model recognition method based on visual attention model. Image and Vision Computing, 2020. 104: p. 104027. [18]Amirkhani, A. and A.H. Barshooi, DeepCar 5.0: Vehicle Make and Model Recognition Under Challenging Conditions. IEEE Transactions on Intelligent Transportation Systems, 2023. 24(1): p. 541-553. [19]ABC 好車網. Available from: https://www.abccar.com.tw. [20]Schroff, F., D. Kalenichenko, and J. Philbin FaceNet: A Unified Embedding for Face Recognition and Clustering. 2015. arXiv:1503.03832 DOI: 10.48550/arXiv.1503.03832. [21]DeepCar5.0. Available from: https://github.com/DeepCar/DeepCar5.0. [22]Buslaev, A., et al., Albumentations: Fast and Flexible Image Augmentations. Information, 2020. 11(2): p. 125. [23]Lee, H.-y.; Available from: https://www.youtube.com/@HungyiLeeNTU. [24]Zhang, K., et al., Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Processing Letters, 2016. 23: p. 1499-1503.
|