[1]陳奕仲,2021,“2050淨零:全球能源部門路徑圖”,國際能源署全球能源系統達到淨零排放的預測路徑分析報告。
[2]李文彬,2021,"淨零排放與碳中和發展趨勢"。
[3]劉庭莉,2022,"台灣2050氫應用發展技術藍圖"。
[4]European Commission,, 2023, "Europe: Building a Sustainable Hydrogen Economy."
[5]METI, 2023, "Japan’s Strategy for Hydrogen."
[6]James, B.,2022,"質子交換膜燃料電池(PEMFC)商業化的關鍵要素—電極觸媒的品質與成本"。
[7]李仁傑,2022,"燃料電池簡介"。
[8]楊顯整,2012,"燃料電池應用與產業發展現況"。
[9]張瑤,2006,"燃料電池全面分析:四大優勢三大應用產業元年"。
[10]Yang Yang, 2022, "Towards flexible fuel cells: development, challenge and prospect."
[11]李佳佳,2021,"質子交換膜超百億市場空間國內企業加速高端突破和量產"。
[12]清茶薈,2023,"雙極板"。
[13]國際氫能網,2023,"國內雙極板市場探索:2023多點開花,產能加速擴大"。
[14]國際能源網,2022,"產能超2000萬片!雙極板市場未來競爭格局如何?"。
[15]禾祥禎有限公司,2007,"熱可塑性彈性體",禾祥禎有限公司。
[16]張語屏,2022,"蚵殻粉抗菌再利用!製成跑鞋、讓馬拉松選手穿著跑5000公里",今周刊。
[17]培林企業有限公司,1992,"碳酸鈣",培林企業有限公司。
[18]宜得世股份有限公司,2021,"一篇看懂射出成型、中空成型、押出成型有何不同?"。
[19]施爸,2022,"石墨烯是什麼?石墨烯特性、優缺點與功效?市面上有哪些石墨烯產品推薦"。
[20]可成科技,2012,"化學/化工與表面處理技術"。蝶動之王,2021,"七種燃料電池優點缺點對比"。
[21]楊明坤,2010,"燃料電池的發展與應用趨勢"。
[22]蝶動之王,2021,"七種燃料電池優點缺點對比"。
[23]黃鎮江,2008,"燃料電池"。
[24]曾勛,2018,"燃料電池技術發展概述",科教導刊。
[25]陳聖勳,2020,"以田口-灰關聯探討循環伏安合成聚吡咯導電層不銹鋼雙極板之最佳化研究",國立虎尾科技大學機械與電腦輔助工程系碩士班碩士論文。[26]Yuan Duan, 2023, "Materials, components, assembly and performance of flexible polymer electrolyte membrane fuel cell: A review."
[27]李昌駿,2022,"可撓式太陽能電池的應用"。
[28]A. Kusoglu, 2017, " New Insights into Perfluorinated Sulfonic-Acid Ionomers."
[29]Yuzhi Ke, 2021, "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications."
[30]Surya Subianto, 2013, "Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells."
[31]Daniel G. Sanchez, 2017, "Local impact of humidification on degradation in polymer electrolyte fuel cells."
[32]Sujin Yoon, 2020, "Flexible blend polymer electrolyte membranes with excellent conductivity for fuel cells."
[33]C. Weinmueller, 2010, "A flexible direct methanol micro-fuel cell based on a metalized, photosensitive polymer film."
[34]Hyeon-Ji Lee, 2013, "Highly Flexible, Proton-Conductive Silicate Glass Electrolytes for Medium-Temperature/Low-Humidity Proton Exchange Membrane Fuel Cells."
[35]Xiaohang Li, 2021, " High-performance, stable, and flexible direct methanol fuel cell based on a pre-swelling kalium polyacrylate gel electrolyte and single-atom cathode catalyst."
[36]Jin Wang, 2018, " Simple synthesis of Au-Pd alloy nanowire networks as macroscopic, flexible electrocatalysts with excellent performance."
[37]An-Liang Wang, 2016, " PtCu alloy nanotube arrays supported on carbon fiber cloth as flexible anodes for direct methanol fuel cell."
[38]Md Azimur Rahman, 2022, " A physics-based 1-D PEMFC model for simulating two-phase water transport in the electrode and gas diffusion media."
[39]Yiming Xu, 2021, " Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model."
[40]Wang Chen, 2016, " Impact of PTFE content and distribution on liquid–gas flow in PEMFC carbon paper gas distribution layer: 3D lattice Boltzmann simulations."
[41]G.R. Molaeimanesh, 2014, " Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method."
[42]Yanqin Chen, 2022, " Effect of Clamping Compression on the Mechanical Performance of a Carbon Paper Gas Diffusion Layer in Polymer Electrolyte Membrane Fuel Cells."
[43]Poornesh K. Koorata, 2022, " Thermomechanical stability and inelastic energy dissipation as durability criteria for fuel cell gas diffusion media with pre-assembly effects."
[44]Umesh Shinde, 2022, " A phase-dependent constitutive model to predict cyclic electrical conductivity in fuel cell gas diffusion media."
[45]Poornesh K. Koorata, 2021, " Compressive cyclic response of PEM fuel cell gas diffusion media."
[46]Fandi Ning, 2017, " Flexible and Lightweight Fuel Cell with High Specific Power Density."
[47]Jun Wei, 2020, " An ultra-thin, flexible, low-cost and scalable gas diffusion layer composed of carbon nanotubes for high-performance fuel cells."
[48]Shujie Xue, 2022, " Titanium carbide/carbon nanofibers film as flexible gas diffusion layers for passive direct methanol fuel cells."
[49]Begüm Yarar Kaplan, 2017, " Flexible carbon–cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells."
[50]Kookil Han, 2011, " Influence of anisotropic bending stiffness of gas diffusion layers on the degradation behavior of polymer electrolyte membrane fuel cells under freezing conditions."
[51]Begüm Yarar Kaplan, 2017, " Flexible carbon–cellulose fiber-based composite gas diffusion layer for polymer electrolyte membrane fuel cells."
[52]Yun Sik Kang, 2019, " Bending-durable membrane-electrode assembly using metal nanowires for bendable polymer electrolyte membrane fuel cell."
[53]Jun Wei, 2020, " An ultra-thin, flexible, low-cost and scalable gas diffusion layer composed of carbon nanotubes for high-performance fuel cells."
[54]Shujie Xue, 2022, " Titanium carbide/carbon nanofibers film as flexible gas diffusion layers for passive direct methanol fuel cells."
[55]Jiankuo Jia, 2022, " Designing independent water transport channels to improve water flooding in ultra-thin nanoporous film cathodes for PEMFCs."
[56]Mehrdad Ghasabehi, 2022, " Cathode side transport phenomena investigation and Multi-Objective optimization of a tapered parallel flow field PEMFC."
[57]Yun Sik Kang, 2017, " Repetitive bending test of membrane electrode assembly for bendable polymer electrolyte membrane fuel cell."
[58]Yun Sik Kang, 2019, " Bending-durable membrane-electrode assembly using metal nanowires for bendable polymer electrolyte membrane fuel cell."
[59]Ikwhang Chang, 2014, " Performance enhancement in bendable fuel cell using highly conductive Ag nanowires."
[60]Ikwhang Chang, 2016, " Flexible fuel cell using stiffness-controlled endplate."
[61]Hongnyoung Yoo, 2021, " Pre-bent Flow-Field Plates for Enhanced Performance in Flexible Polymer Electrolyte Membrane Fuel Cells in Curved Shape."
[62]Satoshi Tominaka, 2009, " Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate."
[63]Yuxi Song, 2020, " Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell."
[64]Nur Fawwaz Asri, 2017, " Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review."
[65]Fu-Kuang Hsu, 2012, " A flexible portable proton exchange membrane fuel cell."
[66]Taehyun Park, 2017, " A rollable ultra-light polymer electrolyte membrane fuel cell."
[67]Huihui Wang, 2020, " Flexible and Adaptable Fuel Cell Pack with High Energy Density Realized by a Bifunctional Catalyst."
[68]Siyi Zou, 2021, " Highly Safe, Durable, Adaptable, and Flexible Fuel Cell Using Gel/Sponge Composite Material."
[69]Ikwhang Chang, 2013, " Air-breathing flexible Polydimethylsiloxane (PDMS)-based fuel celll."
[70]Hongnyoung Yoo, 2022, " 3D-printed flexible flow-field plates for bendable polymer electrolyte membrane fuel cells."
[71]Eric L. Miller, 2020, " US Department of Energy hydrogen and fuel cell technologies perspectives."
[72]Zonglin Wu, 2017, " A Flexible Foldable Tubular μDMFC for Powering Wearable Devices."
[73]JiaChen Zhu, 2022, " A flexible micro direct methanol fuel cells array based on FPCB."
[74]艾邦氫能源技術網,2022,"燃料電池雙極板材料及製備"。
[75]廣證恒生,2019,"燃料電池行業研究:成本結構與降本空間分析"。
[76]Taehyun Park, 2017, " Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector."
[77]Ha Eun Lee, 2017, " Feasibility study on carbon-felt-reinforced thermoplastic composite materials for PEMFC bipolar plates."
[78]Dongyoung Lee, 2017, " Cathode/anode integrated composite bipolar plate for high-temperature PEMFC."
[79]Canbin Zhang, 2018, " Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by using polymer powder medium based flexible forming."
[80]寰宇尖端薄膜有限公司,2023,"高分子複合材料雙極板射出成形特性之初步探討",塑膠薄膜材料網。
[81]黃堯堂,2007,"聚乙烯醇/碳酸鈣奈米材料的製備與特性",國立成功大學化學系專班。
[82]王晨,2020,"牡蠣粉含量對ABS/牡蠣粉高分子複材射出成型機械性質的影響",遠東科技大學機械工程研究所在職專班。
[83]鐘生,2020,"表面處理加工大全"。
[84]工作熊,2010,"塑膠 MFI/MI/MFR (熔體指數/熔融指數) "。
[85]塑膠小站,2003,"MFI 『熔融指數』"。
[86]SCINCO,2021,"淺談熱重分析儀技術原理"。
[87]科邁斯集團,2021,"熱分析-DSC 熱示差掃描分析儀的原理及應用介紹"。
[88]利泓科技有限公司,"傅立葉轉換紅外線光譜分析原理"。
[89]雄宇事業有限公司,2021,"萬能試驗機"。
[90]ZwickRoell,2021,"拉伸測試"。
[91]Kevin Yu,2017," 材料性質:楊氏係數"。
[92]蔡伊閔,2023,"TPU/牡蠣殼粉複合材之物性研究",國立虎尾科技大學機械與電腦輔助工程系專題製作報告。
[93]Bareiss,2023,"邵氏硬度是什麼?如何換算?一篇搞懂原理、種類與用法"。
[94]國立師範大學,2018,"拉曼光譜儀"。
[95]檢測技術II,2021,"電子顯微鏡 Electron microscope"。
[96]楊永盛,楊慶宗,賀俊,1975,"電子顯微鏡"
[97]同加貿易股份有限公司,2015,"表面粗度計SJ-410"
[98]Mitutoyo,2015,"表面粗度計SJ-410"
[99]李楠楠、李國祿、王海斗、康嘉杰,2015,"表面自由能的計算方法及其對材料表面性能影響機制的研究現狀"。
[100]廖皓宇,2021,"以田口-灰關聯探討二氧化鈦應用於異質接面矽奈米線陣列最佳化之研究"。
[101]倪瑞鴻,2022,"以電化學法於低溫合成PPy導電流道層不鏽鋼雙極板之研究"。
[102]Y.T.Liao,2003, "4-point probe."
[103]Zhaochenxu,2020,"電化學工作站中的恆電位儀基本原理"。
[104]注塑機網,2016,"改性碳酸鈣填充HDPE塑料流變性能研究"。
[105]黃志雄,2015,"功能性微粒對熱塑性聚氨酯薄膜微多孔形成機制之探討"。
[106]凍蕾,2013,"碳酸鈣"。
[107]陳瑞燕,2022,"氧化鈣吸附二氧化碳特性因子效益與顯著性之探討"。
[108]彭鈺鈞,2015,"聚丙烯/天然無機物複合材料之製備與性質研究"。
[109]袁鳳,2016,"聚酯型聚氨酯彈性體的合成及性能研究",哈爾濱工業大學複合材料與結構研究所。
[110]朱東川,2003,"廢棄牡蠣殼粉取代水泥及細骨材對水泥砂漿性質之影響"。
[111]粉體技術網,2021,"碳酸鈣常用有機表面改性劑及使用特點"。
[112]黃堯堂,2007,"聚乙烯醇/碳酸鈣奈米材料的製備與特性",國立成功大學化學研究所碩士學位論文[113]匹優工業股份有限公司,2019,"什麼是聚氨酯(PU), CPU, TPU?了解聚氨酯製程與類型,選擇適當材料製造高品質產品"。
[114]張哲旭,2017,"XRD從基本原理到結構分析"。
[115]Daniel Ramirez, 2018, " Improved mechanical and antibacterial properties of thermoplastic polyurethanes by efficient double functionalization of silver nanoparticles"
[116]馮健,2018,"西安南郊唐墓出土“石灰”的分析與探討"。
[117]于家居,2019,"聚酯型TPU與聚醚型TPU的區別詳解"。
[118]Chao Hu, 2023, " A study on effect of oyster shell powder on mechanical properties of asphalt and multiple degrees of modification mechanism."
[119]柳萬霞,2017,"輕質碳酸鈣製造、應用與現況"。
[120]嘉峪檢測網,2019,"石墨烯的檢測和分析方法詳解"。
[121]科學指南針,2021,"XRD常見問題"。
[122]李秀婷,2017,"拉曼光譜法表徵石墨烯晶界"。
[123]Lin Chen, 2023, "Sprayed and mechanical-modified graphite layer as transferred electrode for high-efficiency perovskite solar cells."
[124]銥衛科技,2014,"氧化石磨稀"。
[125]Yang li, 2023, " A Novel Plasma-Sprayed Ti4O7/Carbon Nanotubes/Al2O3 Coating with Bifunctional Microwave Application."
[126]Arife Uzundurukan, 2020, " Examination of compression effects on PEMFCperformance by numerical and experimental analyses."
[127]M. B. Sassin, 2016, " Impact of compressive stress on MEA pore structure and its consequence on PEMFC performance."
[128]Emad Farokhi, 2023, " Multi-objective optimization of a double tapered flow field Proton Exchange Membrane Fuel cell."
[129]Tao Hai, 2023, " The optimal design of solid oxide and molten carbonate fuel cells integration with a CO2 recycling unit: An attempt to reach a clean transition process."
[130]Seunghun Oh, 2023, " Energetic, exergetic, economic, and exergoeconomic analysis of a phosphoric acid fuel cell-organic rankine cycle hybrid system."
[131]Jianzi Liu, 2023, " A comparison of two schemes for pure hydrogen injection into a syngas-fueled SOFC: Thermoeconomic and environmental-based investigations."
[132]Ahmed T. Hamada, 2023, " Alkaline fuel cells: Status and prospects."
[133]Hasna Wakrim, 2023, " Performance evaluation of polymer electrolyte membranes based on hydrogen sulfite ionic liquid for application in direct methanol fuel cell (DMFC)."
[134]Zheng Liang, 2023, " Integration and optimization of methanol-reforming proton exchange membrane fuel cell system for distributed generation with combined cooling, heating and power."
[135]Ke Liu, 2023, " Accelerating proton conduction in proton exchange membranes with sandwich structure based on carbon nanotubes oxide."
[136]Yulin Wang, 2023, " Lattice Boltzmann simulation of cathode catalyst layer degradation on transport reaction process within a proton exchange membrane fuel cell."
[137]Feilin Yu, 2023, " Facile spray-printing of hydrophobic and porous gas diffusion electrodes enabling prolonged electrochemical CO2 reduction to ethylene."
[138]Xiaoyu Mao, 2023, " Expanded graphite (EG)/Ni@Melamine foam (MF)/EG sandwich-structured flexible bipolar plate with excellent electrical conductivity, mechanical properties, and gas permeability."
[139]陳義忠,2014,"物質科學"。