|
[1] 中華民國國家發展委員會,“中華民國人口推估(2020 至 2070 年)” ,2020,[Online] Available: https://pop-proj.ndc.gov.tw/upload/download/中華民國人口推估(2020 至 2070 年)報告.pdf. [Accessed: 11 July 2023]. [2] 統計處, “110 年死因統計結果分析”,中華民國衛生福利部,2021,[Online]. Available: https://www.mohw.gov.tw/cp-16-70314-1.html .[Accessed: 11 July 2023]. [3] 中華民國國民健康署, “每 6 人就有 1 位老人曾跌倒 國健署傳授防跌妙招”, 2019,[Online] Available: https://www.mohw.gov.tw/cp-16-49428-1.html. [Accessed: 11 July 2023]. [4] Chin-Feng Lai, Sung-Yen Chang, Han-Chieh Chao, Yueh-Min Huang, “Detection of Cognitive Injured Body Region Using Multiple Triaxial Accelerometers for Elderly Falling”, in IEEE Sensors Journal, Vol.11, Issue.3, 2011, pp. 763-770. [5] Feng, G., Mai, J., Ban, Z., Guo, X., & Wang, G. (2016). Floor pressure imaging for fall detection with fiber-optic sensors. IEEE Pervasive Computing, 15(2), 40-47. [6] Wei, S. E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional pose machines. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (pp. 4724-4732). [7] Fang, H. S., Xie, S., Tai, Y. W., & Lu, C. (2017). Rmpe: Regional multi-person pose estimation. In Proceedings of the IEEE international conference on computer vision (pp. 2334-2343). [8] Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7291-7299). [9] Osokin, D. (2018). Real-time 2d multi-person pose estimation on cpu: Lightweight openpose. arXiv preprint arXiv:1811.12004. [10] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448). [11] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). [12] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing. [13] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [14] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep 58 convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). [15] Hayat, K. (2017). Super-resolution via deep learning. arXiv preprint arXiv:1706.09077. [16] ultralytics,“yolov5”,2020,[Online]Available:https://github.com/ultralytics/yolov5/wiki/Ti ps-for-Best-Training-Results. [Accessed: 11 July 2023]. [17] Maxim Ivanov, “The evolution of the YOLO neural networks family from v1 to v7” ,2022,[Online] Available:https://medium.com/deelvin-machine-learning/the-evolutionof-the-yolo-neural-networks-family-from-v1-to-v7-96d0687b4dce. [Accessed: 11 July 2023]. [18] Kwolek, B., & Kepski, M. (2014). Human fall detection on embedded platform using depth maps and wireless accelerometer. Computer methods and programs in biomedicine, 117(3), 489-501. [19] heartexlabs,“LabelImg”,2022,[Online]Available:https://github.com/heartexlabs/labelImg. [Accessed: 11 July 2023]. [20] ASUS, “ASUS RT-AC1200 V2”,[Online] Available:https://www.asus.com/tw/networking-iot-servers/wifi-routers/asus-wifirouters/rt-ac1200-v2. [Accessed: 11 July 2023].
|