|
1. V. Romero, H. Akpinar, and D. G. Assimos, “Kidney stones: a global picture of prevalence, incidence, and associated risk factors,” Reviews in urology, vol. 12(2-3), p. e86-e96, 2010. 2. A. Chewcharat and G. Curhan, “Trends in the prevalence of kidney stones in the United States from 2007 to 2016,” Urolithiasis, vol. 49, no. 1, pp. 27–39, 2020. 3. G. Tundo, A. Vollstedt, W. Meeks, and V. Pais, “Beyond prevalence: Annual cumulative incidence of kidney stones in the United States,” Journal of Urology, vol. 205, no. 6, pp. 1704–1709, 2021. 4. O. W. E. N. NIALL, J. O. H. N. RUSSELL, R. O. B. E. R. T. MacGREGOR, H. E. N. R. Y. DUNCAN, and J. A. M. E. S. MULLINS, “A comparison of noncontrast computerized tomography with excretory urography in the assessment of acute flank pain,” The Journal of Urology, pp. 534–537, 1999. 5. J.-H. Wang, S.-H. Shen, S.-S. Huang, and C.-Y. Chang, “Prospective comparison of unenhanced spiral computed tomography and intravenous urography in the evaluation of acute renal colic,” Journal of the Chinese Medical Association, vol. 71, no. 1, pp. 30–36, 2008. 6. K. Fujii, T. Aoyama, S. Koyama, and C. Kawaura, “Comparative evaluation of organ and effective doses for paediatric patients with those for adults in chest and abdominal CT Examinations,” The British Journal of Radiology, vol. 80, no. 956, pp. 657–667, 2007. 7. R. Smith-Bindman, M. Moghadassi, N. Wilson, T. R. Nelson, J. M. Boone, C. H. Cagnon, R. Gould, D. J. Hall, M. Krishnam, R. Lamba, M. McNitt-Gray, A. Seibert, and D. L. Miglioretti, “Radiation doses in consecutive CT examinations from five University of California Medical Centers,” Radiology, vol. 277, no. 1, pp. 134–141, 2015. 8. V. I. Metaxas, G. A. Messaris, A. N. Lekatou, T. G. Petsas, and G. S. Panayiotakis, “Patient doses in common diagnostic X-ray examinations,” Radiation Protection Dosimetry, vol. 184, no. 1, pp. 12–27, 2018. 9. D. J. Brenner and E. J. Hall, “Computed tomography — an increasing source of radiation exposure,” New England Journal of Medicine, vol. 357, no. 22, pp. 2277–2284, 2007. 10. Y. Sagara, A. K. Hara, W. Pavlicek, A. C. Silva, R. G. Paden, and Q. Wu, “Abdominal CT: Comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients,” American Journal of Roentgenology, vol. 195, no. 3, pp. 713–719, 2010. 11. A. S. Ashour, N. Dey, and W. S. Mohamed, “Abdominal imaging in clinical applications: Computer Aided Diagnosis approaches,” Medical Imaging in Clinical Applications, pp. 3–17, 2016. 12. A. Heidenreich, “Modern approach of diagnosis and management of acute flank pain: Review of all imaging modalities,” European Urology, vol. 41, no. 4, pp. 351–362, 2002. 13. A. S. Panayides, A. Amini, N. D. Filipovic, A. Sharma, S. A. Tsaftaris, A. Young, D. Foran, N. Do, S. Golemati, T. Kurc, K. Huang, K. S. Nikita, B. P. Veasey, M. Zervakis, J. H. Saltz, and C. S. Pattichis, “AI in Medical Imaging Informatics: Current challenges and Future Directions,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 7, pp. 1837–1857, 2020. 14. S. K. Zhou, H. Greenspan, C. Davatzikos, J. S. Duncan, B. Van Ginneken, A. Madabhushi, J. L. Prince, D. Rueckert, and R. M. Summers, “A review of deep learning in medical imaging: Imaging Traits, Technology Trends, case studies with progress highlights, and future promises,” Proceedings of the IEEE, vol. 109, no. 5, pp. 820–838, 2021. 15. E. J. Lim, D. Castellani, W. Z. So, K. Y. Fong, J. Q. Li, H. Y. Tiong, N. Gadzhiev, C. T. Heng, J. Y.-C. Teoh, N. Naik, K. Ghani, K. Sarica, J. De La Rosette, B. Somani, and V. Gauhar, “Radiomics in urolithiasis: Systematic review of current applications, limitations, and Future Directions,” Journal of Clinical Medicine, vol. 11, no. 17, p. 5151, 2022. 16. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional Neural Networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017. 17. D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy efficiency of deep convolutional neural networks on cpus and gpus,” 2016 IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), 2016. 18. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998. 19. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sánchez, “A survey on Deep Learning in medical image analysis,” Medical Image Analysis, vol. 42, pp. 60–88, 2017. 20. D. R. Sarvamangala and R. V. Kulkarni, “Convolutional neural networks in medical image understanding: A survey,” Evolutionary Intelligence, vol. 15, no. 1, pp. 1–22, 2021. 21. Y. Fu, Y. Lei, T. Wang, W. J. Curran, T. Liu, and X. Yang, “Deep Learning in Medical Image Registration: A Review,” Physics in Medicine & Biology, vol. 65, no. 20, 2020. 22. H.-P. Chan, R. K. Samala, L. M. Hadjiiski, and C. Zhou, “Deep learning in medical image analysis,” Advances in Experimental Medicine and Biology, pp. 3–21, 2020. 23. K. Doi, “Computer-aided diagnosis in medical imaging: Historical Review, current status and future potential,” Computerized Medical Imaging and Graphics, vol. 31, no. 4-5, pp. 198–211, 2007. 24. H. P. Chan, L. M. Hadjiiski, and R. K. Samala, “Computer‐aided diagnosis in the era of Deep learning,” Medical Physics, vol. 47, no. 5, 2020. 25. K. H. Cha, L. Hadjiiski, R. K. Samala, H.-P. Chan, E. M. Caoili, and R. H. Cohan, “Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets,” Medical Physics, vol. 43, no. 4, pp. 1882–1896, 2016. 26. M. Längkvist, J. Jendeberg, P. Thunberg, A. Loutfi, and M. Lidén, “Computer aided detection of ureteral stones in thin slice computed tomography volumes using convolutional Neural Networks,” Computers in Biology and Medicine, vol. 97, pp. 153–160, 2018. 27. L. A. Fitri, F. Haryanto, H. Arimura, C. YunHao, K. Ninomiya, R. Nakano, M. Haekal, Y. Warty, and U. Fauzi, “Automated classification of urinary stones based on microcomputed tomography images using convolutional neural network,” Physica Medica, vol. 78, pp. 201–208, 2020. 28. M. Kobayashi, J. Ishioka, Y. Matsuoka, Y. Fukuda, Y. Kohno, K. Kawano, S. Morimoto, R. Muta, M. Fujiwara, N. Kawamura, T. Okuno, S. Yoshida, M. Yokoyama, R. Suda, R. Saiki, K. Suzuki, I. Kumazawa, and Y. Fujii, “Computer-aided diagnosis with a convolutional neural network algorithm for automated detection of urinary tract stones on plain X-ray,” BMC Urology, vol. 21, no. 1, 2021. 29. K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” 2017 IEEE International Conference on Computer Vision (ICCV), 2017. 30. W. Shen, W. Xu, H. Zhang, Z. Sun, J. Ma, X. Ma, S. Zhou, S. Guo, and Y. Wang, “Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net,” Inverse Problems & Imaging, vol. 15, no. 6, p. 1333, 2021. 31. K. Zuiderveld, “Contrast Limited adaptive histogram equalization,” Graphics Gems, pp. 474–485, 1994. 32. J. B. Zimmerman, S. M. Pizer, E. V. Staab, J. R. Perry, W. McCartney, and B. C. Brenton, “An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement,” IEEE Transactions on Medical Imaging, vol. 7, no. 4, pp. 304–312, 1988. 33. Y.-Y. Liu, Z.-H. Huang, and K.-W. Huang, “Deep learning model for computer-aided diagnosis of urolithiasis detection from kidney–ureter–bladder images,” Bioengineering, vol. 9, no. 12, p. 811, 2022. 34. J. A. Mandeville, E. Gnessin, and J. E. Lingeman, “Imaging evaluation in the patient with renal stone disease,” Seminars in Nephrology, vol. 31, no. 3, pp. 254–258, 2011. 35. E.-S. H. Ibrahim, J. G. Cernigliaro, M. D. Bridges, R. A. Pooley, and W. E. Haley, “The capabilities and limitations of clinical magnetic resonance imaging for Detecting Kidney Stones: A retrospective study,” International Journal of Biomedical Imaging, vol. 2016, pp. 1–6, 2016. 36. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 37. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-V4, inception-resnet and the impact of residual connections on learning,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017. 38. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” Lecture Notes in Computer Science, pp. 234–241, 2015. 39. A. Fawzi, H. Samulowitz, D. Turaga, and P. Frossard, “Adaptive data augmentation for Image Classification,” 2016 IEEE International Conference on Image Processing (ICIP), 2016. 40. L. Perez, and J. Wang, “The effectiveness of data augmentation in image classification using deep learning,” Convolutional Neural Networks Vis. Recognit, pp. 1-8, 2017. 41. C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for Deep Learning,” Journal of Big Data, vol. 6, no. 1, 2019. 42. L. Nanni, M. Paci, S. Brahnam, and A. Lumini, “Comparison of different image data augmentation approaches,” Journal of Imaging, vol. 7, no. 12, p. 254, 2021. 43. M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Gan-based synthetic medical image augmentation for increased CNN performance in liver lesion classification,” Neurocomputing, vol. 321, pp. 321–331, 2018. 44. Y. Ma, J. Liu, Y. Liu, H. Fu, Y. Hu, J. Cheng, H. Qi, Y. Wu, J. Zhang, and Y. Zhao, “Structure and illumination constrained gan for medical image enhancement,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3955–3967, 2021. 45. L. Wright, “Ranger—A Synergistic Optimizer,” Available online:{https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer}, 2019. (Accessed: 28-Feb-2023). 46. S.-Y. Wang, O. Wang, R. Zhang, A. Owens, and A. A. Efros, “CNN-generated images are surprisingly easy to spot… for now,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020. 47. L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han, “On the variance of the adaptive learning rate and beyond,” arXiv preprint arXiv:1908.03265, 2019. 48. M. Zhang, J. Lucas, J. Ba, and G. E. Hinton, “Lookahead optimizer: k steps forward, 1 step back,” Advances in neural information processing systems, 32, 2019. 49. C. Chen, M.-Y. Liu, O. Tuzel, and J. Xiao, “R-CNN for small object detection,” Computer Vision – ACCV 2016, pp. 214–230, 2017. 50. M. Z. Islam, M. M. Islam, and A. Asraf, “A combined deep CNN-LSTM network for the detection of novel coronavirus (COVID-19) using X-ray images,” Informatics in Medicine Unlocked, vol. 20, p. 100412, 2020. 51. S. Pathan, P. C. Siddalingaswamy, and T. Ali, “Automated detection of COVID-19 from chest X-ray scans using an optimized CNN architecture,” Applied Soft Computing, vol. 104, p. 107238, 2021. 52. M. Gazda, J. Plavka, J. Gazda, and P. Drotar, “Self-supervised deep convolutional neural network for chest X-ray classification,” IEEE Access, vol. 9, pp. 151972–151982, 2021. 53. Y. Feng, X. Xu, Y. Wang, X. Lei, S. K. Teo, J. Z. Sim, Y. Ting, L. Zhen, J. T. Zhou, Y. Liu, and C. H. Tan, “Deep supervised domain adaptation for pneumonia diagnosis from chest X-ray images,” IEEE Journal of Biomedical and Health Informatics, vol. 26, no. 3, pp. 1080–1090, 2022. 54. B. M. Z. Hameed, M. Shah, N. Naik, H. Singh Khanuja, R. Paul, and B. K. Somani, “Application of artificial intelligence-based classifiers to predict the outcome measures and stone-free status following percutaneous nephrolithotomy for staghorn calculi: Cross-validation of data and estimation of accuracy,” Journal of Endourology, vol. 35, no. 9, pp. 1307–1313, 2021. 55. A. Martinez, D.-H. Trinh, J. El Beze, J. Hubert, P. Eschwege, V. Estrade, L. Aguilar, C. Daul, and G. Ochoa, “Towards an automated classification method for ureteroscopic kidney stone images using ensemble learning,” 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020. 56. Pavithra, Sanjurajan, Chitradevi, S. Eliyas, A. Benitta, and S. Kumar, “Kidney Stone prediction using neural network classifier,” 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022. 57. M. A. El-Ghar, H. Farg, D. E. Sharaf, and T. El-Diasty, “CT and MRI in urinary tract infections: A spectrum of different imaging findings,” Medicina, vol. 57, no. 1, p. 32, 2021. 58. H. S. Alghamdi, G. Amoudi, S. Elhag, K. Saeedi, and J. Nasser, “Deep learning approaches for detecting COVID-19 from chest X-ray images: A survey,” IEEE Access, vol. 9, pp. 20235–20254, 2021. 59. M. S. Islam, N. Kaabouch, and W. C. Hu, “A survey of medical imaging techniques used for breast cancer detection,” IEEE International Conference on Electro-Information Technology, EIT 2013, 2013. 60. S. Poovongsaroj, P. Rattanachaisit, T. Patcharatrakul, S. Gonlachanvit, and P. Vateekul, “Ai-assisted diagnosis of DYSSYNERGIC defecation using deep learning approach on abdominal radiography and symptom questionnaire,” 2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE), 2022. 61. L. Li, M. Wei, B. Liu, K. Atchaneeyasakul, F. Zhou, Z. Pan, S. A. Kumar, J. Y. Zhang, Y. Pu, D. S. Liebeskind, and F. Scalzo, “Deep learning for hemorrhagic lesion detection and segmentation on brain CT images,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1646–1659, 2021. 62. L. Huang, R. Han, T. Ai, P. Yu, H. Kang, Q. Tao, and L. Xia, “Serial quantitative chest CT assessment of COVID-19: A deep learning approach,” Radiology: Cardiothoracic Imaging, vol. 2, no. 2, 2020. 63. B. Kalb, P. Sharma, K. Salman, K. Ogan, J. G. Pattaras, and D. R. Martin, “Acute abdominal pain: Is there a potential role for MRI in the setting of the emergency department in a patient with renal calculi?,” Journal of Magnetic Resonance Imaging, vol. 32, no. 5, pp. 1012–1023, 2010. 64. Imaging in the Management of Ureteral Calculi, AUA Update Series, pp. 373–384, 2013. 65. Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, “Deep Learning for Brain MRI segmentation: State of the art and Future Directions,” Journal of Digital Imaging, vol. 30, no. 4, pp. 449–459, 2017. 66. J. Liu, Y. Pan, M. Li, Z. Chen, L. Tang, C. Lu, and J. Wang,“Applications of deep learning to MRI images: A survey,” Big Data Mining and Analytics, vol. 1, no. 1, pp. 1–18, 2018. 67. S. Gul, M. S. Khan, A. Bibi, A. Khandakar, M. A. Ayari, and M. E. H. Chowdhury, “Deep learning techniques for liver and liver tumor segmentation: A Review,” Computers in Biology and Medicine, vol. 147, p. 105620, 2022. 68. H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing Network,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 69. D. R. Cox and E. J. Snell, “A general definition of residuals,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 30, no. 2, pp. 248–265, 1968. 70. S. Jadon, “A survey of loss functions for semantic segmentation,” 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 2020. 71. S. Kosub, “A note on the triangle inequality for the Jaccard distance,” Pattern Recognition Letters, vol. 120, pp. 36–38, 2019. 72. Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3D U-Net: Learning dense volumetric segmentation from sparse annotation,” Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, pp. 424–432, 2016. 73. X. Xiao, S. Lian, Z. Luo, and S. Li, “Weighted Res-UNet for high-quality retina vessel segmentation,” 2018 9th International Conference on Information Technology in Medicine and Education (ITME), 2018. 74. D. Jha, P. H. Smedsrud, D. Johansen, T. de Lange, H. D. Johansen, P. Halvorsen, and M. A. Riegler, “A comprehensive study on colorectal polyp segmentation with resunet++, conditional random field and test-time augmentation,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 6, pp. 2029–2040, 2021. 75. S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and its variations,” Computer Vision, Graphics, and Image Processing, vol. 39, no. 3, pp. 355–368, 1987. 76. K. Lucknavalai and J. P. Schulze, “Real-time contrast enhancement for 3D medical images using histogram equalization,” Advances in Visual Computing, pp. 224–235, 2020. 77. M. Hayati, K. Muchtar, Roslidar, N. Maulina, I. Syamsuddin, G. N. Elwirehardja, and B. Pardamean, “Impact of clahe-based image enhancement for diabetic retinopathy classification through Deep Learning,” Procedia Computer Science, vol. 216, pp. 57–66, 2023. 78. P. H. Dinh and N. L. Giang, “A new medical image enhancement algorithm using adaptive parameters,” International Journal of Imaging Systems and Technology, vol. 32, no. 6, pp. 2198–2218, 2022. 79. P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth, “A review of medical image data augmentation techniques for Deep Learning Applications,” Journal of Medical Imaging and Radiation Oncology, vol. 65, no. 5, pp. 545–563, 2021. 80. K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. 81. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Imagenet Large Scale Visual Recognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015. 82. L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale: Scale-aware Semantic Image segmentation,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 83. L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018. 84. Z.-H. Huang, Y.-Y. Liu, and K.-W. Huang, “Design and Implementation of a Deep Learning Model for Renal Stone Detection and Segmentation in Kidney Ureter Bladder Images,” IJMS, under review, 2023.
|