|
[1]VahidMohammadi, A., Rosen, J., & Gogotsi, Y. (2021). The world of two-dimensional carbides and nitrides (MXenes). Science, 372(6547), eabf1581. [2]Li, S., Qin, Z., Wu, H., et al. (2022). Anomalous thermal transport under high pressure in boron arsenide. Nature, 1-6. [3]Wu, F., Tian, H., Shen, Y., et al. (2022). Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 603(7900), 259-264. [4]Tran, M. A., Zhang, C., Morin, T. J., et al. (2022). Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature, 610(7930), 54-60. [5]Vaghasiya, J. V., Mayorga-Martinez, C. C., & Pumera, M. (2022). Telemedicine platform for health assessment remotely by an integrated nanoarchitectonics FePS3/rGO and Ti3C2-based wearable device. Npj Flexible Electronics, 6(1), 73. [6]Gadre, C. A., Yan, X., Song, Q., et al. (2022). Nanoscale imaging of phonon dynamics by electron microscopy. Nature, 606(7913), 292-297. [7]Xia, Y., Mathis, T. S., Zhao, M. Q., et al. (2018). Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature, 557(7705), 409-412. [8]Ghidiu, M., Lukatskaya, M. R., Zhao, M. Q., et al. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516(7529), 78-81. [9]Lipatov, A., Lu, H., Alhabeb, M., et al. (2018). Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science advances, 4(6), eaat0491. [10]Liu, R., & Li, W. (2018). High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly (vinyl alcohol)(PVA) composites. ACS omega, 3(3), 2609-2617. [11]Lee, C., Park, S. M., Kim, S., et al. (2022). Field-induced orientational switching produces vertically aligned Ti3C2Tx MXene nanosheets. Nature communications, 13(1), 5615. [12]Hwang, H., Yang, S., Yuk, S., et al. (2023). Ti3C2Tx MXene as a growth template for amorphous RuOx in carbon nanofiber-based flexible electrodes for enhanced pseudocapacitive energy storage. NPG Asia Materials, 15(1), 29. [13]Liu, N., Li, Q., Wan, H., et al. (2022). High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nature Communications, 13(1), 5551. [14]Iqbal, A., Shahzad, F., Hantanasirisakul, K., et al. (2020). Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3C2Tx (MXene). Science, 369(6502), 446-450. [15]Kamysbayev, V., Filatov, A. S., Hu, H., et al. (2020). Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 369(6506), 979-983. [16]Pham, V. T., & Fang, T. H. (2022). Thermal and mechanical characterization of nanoporous two-dimensional MoS2 membranes. Scientific reports, 12(1), 7777. [17]Kaur, K., Khandy, S. A., Dhiman, S., et al. (2022). Computational prediction of thermoelectric properties of 2D materials. Electronic Structure, 4(2), 023001. [18]Dai, H., & Wang, R. (2022). Methods for Measuring Thermal Conductivity of Two-Dimensional Materials: A Review. Nanomaterials, 12(4), 589. [19]Wang, N., Shen, C., Sun, Z., et al. (2022). High-temperature thermoelectric monolayer Bi2TeSe2 with high power factor and ultralow thermal conductivity. ACS Applied Energy Materials, 5(2), 2564-2572. [20]Wei, Y., Deng, C., Zheng, X., et al. (2022). Anisotropic in-plane thermal conductivity for multi-layer WTe2. Nano Research, 15(1), 401-407. [21]Zhang, C., Ma, D., Shang, M., et al. (2022). Graded thermal conductivity in 2D and 3D homogeneous hotspot systems. Materials Today Physics, 22, 100605. [22]Tang, S., Wu, M., Bai, S., et al. (2022). Honeycomb-like puckered PbTe monolayer: A promising n-type thermoelectric material with ultralow lattice thermal conductivity. Journal of Alloys and Compounds, 907, 164439. [23]Su, J., Liu, H., & Jia, Z. (2022). Electric field tunable electronic properties of antimonene/graphyne van der Waals heterostructure. Journal of Alloys and Compounds, 909, 164653. [24]Gholivand, H., Fuladi, S., Hemmat, Z., Salehi-Khojin, A., & Khalili-Araghi, F. (2019). Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. Journal of Applied Physics, 126(6), 065101. [25]Mao, Z., Hao, W., Wang, W., et al. (2023). BiOI@ CeO2@ Ti3C2 MXene composite S-scheme photocatalyst with excellent bacteriostatic properties. Journal of Colloid and Interface Science, 633, 836-850. [26]Bai, H., Wen, G., Liang, A., & Jiang, Z. (2022). Ti3C2@ Pd nanocatalytic amplification-polypeptide SERS/RRS/Abs trimode biosensoring platformfor ultratrace trinitrotoluene. Biosensors and Bioelectronics, 217, 114743. [27]Borysiuk, V., & Mochalin, V. N. (2019). Thermal stability of two-dimensional titanium carbides Tin+ 1Cn (MXenes) from classical molecular dynamics simulations. MRS communications, 9(1), 203-208. [28]Hu, Y., Chu, H., Li, D., et al. (2021). Enhanced Q-switching performance of magnetite nanoparticle via compositional engineering with Ti3C2 MXene in the near infrared region. Journal of Materials Science & Technology, 81, 51-57. [29]Chen, J., Yang, B., Lim, Y. D., et al. (2020). Ti3C2 (MXene) based field electron emitters. Nanotechnology, 31(28), 285701. [30]Song, Y., Sun, Z., Fan, Z., et al. (2020). Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy, 70, 104555. [31]Zhang, L., Yang, J., Xie, T., et al. (2020). Boosting visible-light-driven photocatalytic activity of BiPO4 via constructing Schottky junction with Ti3C2 MXene. Materials & design, 192, 108772. [32]Liu, L., Zhao, Q., Liu, R., & Zhu, L. (2019). Hydrogen adsorption-induced catalytic enhancement over Cu nanoparticles immobilized by layered Ti3C2 MXene. Applied Catalysis B: Environmental, 252, 198-204. [33]Lao, J., Lv, R., Gao, J., et al. (2018). Aqueous stable Ti3C2 MXene membrane with fast and photoswitchable nanofluidic transport. ACS nano, 12(12), 12464-12471. [34]Mao, P., Liu, K., Sun, A., et al. (2023). Controlled synthesis of 3D marigold-like ZnIn2S4/Ti3C2 for rapid and efficient removal of antibiotics. Arabian Journal of Chemistry, 16(8), 104883. [35]Go, S., & Suk, M. E. (2023). Stretch-activated ionic currents through Ti3C2 (OH)2 MXene nanopores. Electrochemistry Communications, 107434.. [36]Yadav, P., Cao, Z., & Barati Farimani, A. (2021). DNA detection with single-layer Ti3C2 MXene nanopore. ACS nano, 15(3), 4861-4869. [37]Lu, C., Yang, L., Yan, B., et al. (2020). Nitrogen‐doped Ti3C2 MXene: mechanism investigation and electrochemical analysis. Advanced Functional Materials, 30(47), 2000852. [38]Guo, Y., Zhou, X., Wang, D., et al. (2019). Nanomechanical properties of Ti3C2 mxene. Langmuir, 35(45), 14481-14485. [39]Wang, J., Chen, S., Yang, Y., et al. (2022). Bulk structure of Si2BN predicted by computational approaches. Diamond and Related Materials, 130, 109530. [40]Ghidiu, M., Kota, S., Halim, J., et al. (2017). Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chemistry of Materials, 29(3), 1099-1106. [41]Wu, C., Huang, W., Liu, H., et al. (2023). Insight into synergistic effect of Ti3C2 MXene and MoS2 on anti-photocorrosion and photocatalytic of CdS for hydrogen production. Applied Catalysis B: Environmental, 330, 122653. [42]Ouyang, Y., Qiu, L., Bai, Y., et al. (2022). Synergistical thermal modulation function of 2D Ti3C2 MXene composite nanosheets via interfacial structure modification. Iscience, 25(8), 104825. [43]Wang, L., Liu, Z. Q., Li, S. F., et al. (2022). Few-layered Ti3C2 MXene-coated Ti–6Al–4V composite powder for high-performance Ti matrix composite. Composites Communications, 33, 101238. [44]Huo, W., Zhang, Z. A., Wang, Z., et al. (2022). Large‐Area Transient Conductive Films Obtained through Photonic Sintering of 2D Materials. Advanced Materials Technologies, 7(2), 2100439. [45]Ma, S., Zhu, S., Liu, M., et al. (2021). A high-performance, thermal and electrical conductive elastomer composite based on Ti3C2 MXene. Composites Part A: Applied Science and Manufacturing, 145, 106292. [46]Wang, L., Liang, W., Wang, C., et al. (2021). Dodecylamine/ Ti3C2-pectin form-stable phase change composites with enhanced light-to-thermal conversion and mechanical properties. Renewable Energy, 176, 663-674. [47]Zeng, H., Li, Z., Li, G., et al. (2022). Interfacial engineering of TiO2/Ti3C2 MXene/carbon nitride hybrids boosting charge transfer for efficient photocatalytic hydrogen evolution. Advanced Energy Materials, 12(1), 2102765. [48]He, J., Liu, S., Deng, L., et al. (2020). Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites. Applied Surface Science, 504, 144210. [49]Song, G., Deng, Q., Wang, B., et al. (2020). Thermal and corrosion behavior of Ti3C2/Copper composites. Composites Communications, 22, 100498. [50]Ronchi, R. M., Marchiori, C. F., Araujo, C. M., et al. (2020). Thermoplastic polyurethane–Ti3C2(Tx) MXene nanocomposite: The influence of functional groups upon the matrix–reinforcement interaction. Applied Surface Science, 528, 146526. [51]Gou, G. Y., Jin, M. L., Lee, B. J., et al. (2019). Flexible two-dimensional Ti3C2 MXene films as thermoacoustic devices. ACS Nano, 13(11), 12613-12620. [52]Kang, R., Zhang, Z., Guo, L., et al. (2019). Enhanced thermal conductivity of epoxy composites filled with 2D transition metal carbides (MXenes) with ultralow loading. Scientific Reports, 9(1), 9135. [53]Feng, A., Yu, Y., Jiang, F., et al. (2017). Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceramics International, 43(8), 6322-6328. [54]Zeng, Y., Tang, L., & Xin, Z. (2023). Improved dielectric and mechanical properties of Ti3C2Tx MXene/silicone rubber composites achieved by adding a few boron nitride nanoplates. Ceramics International, 49(6), 9026-9034. [55]Fan, Y., Tian, Q., Guo, F., et al. (2023). Effects of Ti3C2Tx size on mechanical properties of Ti3C2Tx/ZK61 alloys. Ceramics International, 49(3), 5446-5455. [56]Zeng, Y., Tang, L., Xin, Z., et al. (2023). Ti3C2Tx MXene-Ag/silicone rubber composites with enhanced dielectric properties and improved mechanical properties. Journal of Alloys and Compounds, 930, 167419. [57]Zeng, Y., Rao, S., Xiong, C., et al. (2022). Enhanced dielectric and mechanical properties of CaCu3Ti4O12/Ti3C2Tx MXene/silicone rubber ternary composites. Ceramics International, 48(5), 6116-6123. [58]Duan, N., Shi, Z., Wang, Z., et al. (2022). Mechanically robust Ti3C2Tx MXene/Carbon fiber fabric/Thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Materials & Design, 214, 110382. [59]Zeng, Y., Xiong, C., Li, W., et al. (2022). Significantly improved dielectric and mechanical performance of Ti3C2Tx MXene/silicone rubber nanocomposites. Journal of Alloys and Compounds, 905, 164172. [60]Wang, J., Dai, T., Zhou, Y., et al. (2022). Adhesive and high-sensitivity modified Ti3C2TX (MXene)-based organohydrogels with wide work temperature range for wearable sensors. Journal of Colloid and Interface Science, 613, 94-102. [61]Yang, F., Yao, J., Jin, L., et al. (2022). Multifunctional Ti3C2TX MXene/Aramid nanofiber/Polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Composites Part B: Engineering, 243, 110161. [62]Ding, R., Zheng, H., Zhao, X., et al. (2022). Skin inspired multifunctional crumpled Ti3C2Tx MXene/Tissue composite film. Composites Part A: Applied Science and Manufacturing, 158, 106967. [63]Liu, L., Ying, G., Wen, D., et al. (2022). High-performance copper-matrix materials reinforced by nail board-like structure 2D Ti3C2Tx MXene with in-situ TiO2 particles. Materials Science and Engineering: A, 832, 142392. [64]Oh, T., Lee, S., Kim, H., et al. (2022). Fast and High‐Yield Anhydrous Synthesis of Ti3C2Tx MXene with High Electrical Conductivity and Exceptional Mechanical Strength. Small, 18(46), 2203767. [65]Zhang, Y., He, X., Cao, M., et al. (2021). Tribological and thermo-mechanical properties of TiO2 nanodot-decorated Ti3C2/epoxy nanocomposites. Materials, 14(10), 2509. [66]Xu, Z., Shen, X., Wang, T., et al. (2021). Investigation on Tribological and Thermo-Mechanical Properties of Ti3C2 Nanosheets/Epoxy Nanocomposites. ACS omega, 6(43), 29184-29191. [67]Cygan, T., Wozniak, J., Petrus, M., et al. (2021). Microstructure and mechanical properties of alumina composites with addition of structurally modified 2D Ti3C2 (MXene) phase. Materials, 14(4), 829. [68]Yi, J., Yang, Y., Zhang, Y., et al. (2021). Improved tribological and thermo‐mechanical properties of epoxy resin with micro‐nano structured ZrO2/Ti3C2 particles. Journal of Applied Polymer Science, 138(41), 51209. [69]Wozniak, J., Petrus, M., Cygan, T., et al. (2020). Influence of mxene (Ti3C2) phase addition on the microstructure and mechanical properties of silicon nitride ceramics. Materials, 13(22), 5221. [70]Guo, Q., Zhang, X., Zhao, F., et al. (2020). Protein-inspired self-healable ZrO2/Ti3C2 MXenes/rubber-based supramolecular elastomer for intelligent sensing. ACS nano, 14(3), 2788-2797. [71]Taloub, N., Henniche, A., Liu, L., et al. (2019). Improving the mechanical properties, UV and hydrothermal aging resistance of PIPD fiber using MXene (Ti3C2(OH)2) nanosheets. Composites Part B: Engineering, 163, 260-271. [72]Sheng, X., Zhao, Y., Zhang, L., et al. (2019). Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending. Composites Science and Technology, 181, 107710. [73]Raman, V. K. (1997). Atomic and Ion Collisions in Solids and at Surfaces. Theory, Simulation, and Applications. Journal of Chemical Information and Computer Sciences, 37(5), 963-964. [74]Arsenault, R. J., Beeler, J. R., & Esterling, D. M. (1988). Computer simulation in materials science (No. CONF-8610374-). Metals Park, OH; American Society for Metals. [75]Callister, W. D., & Rethwisch, D. G. (2011). Materials science and engineering, vol. 5 New York. NY: John Wiley & Sons.[Google Scholar]. [76]Jones, J. E. (1924). On the determination of molecular fields.—II. From the equation of state of a gas. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(738), 463-477. [77]Nemati, A., Pishkenari, H. N., Meghdari, A., et al. (2018). Directing the diffusive motion of fullerene-based nanocars using nonplanar gold surfaces. Physical Chemistry Chemical Physics, 20(1), 332-344. [78]Blazhynska, M. M., Kyrychenko, A. V., Stepaniuk, D. S., et al. (2020). Recent advances in theoretical investigation of titanium dioxide nanomaterials. A review. Kharkiv University Bulletin. Chemical Series, (34), 6-56. [79]Girifalco, L. A., & Weizer, V. G. (1959). Application of the Morse potential function to cubic metals. Physical Review, 114(3), 687. [80]Qiu, B., Bao, H., Ruan, X., et al. (2012, July). Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures. In Heat Transfer Summer Conference (Vol. 44779, pp. 659-670). American Society of Mechanical Engineers. [81]Rosato, V., Guillope, M., & Legrand, B. (1989). Thermodynamical and structural properties of fcc transition metals using a simple tight-binding model. Philosophical Magazine A, 59(2), 321-336. [82]Cleri, F., & Rosato, V. (1993). Tight-binding potentials for transition metals and alloys. Physical Review B, 48(1), 22. [83]Frenkel, D., Smit, B., & Ratner, M. A. (1996). Understanding molecular simulation: from algorithms to applications (Vol. 2). San Diego: Academic press. [84]Haile, J. M., Johnston, I., Mallinckrodt, A. J., et al. (1993). Molecular dynamics simulation: elementary methods. Computers in Physics, 7(6), 625-625. [85]Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical review A, 31(3), 1695. [86]Allen, M. P., & Tildesley, D. J. (2017). Computer simulation of liquids. Oxford university press. [87]Lutsko, J. F. (1989). Generalized expressions for the calculation of elastic constants by computer simulation. Journal of applied physics, 65(8), 2991-2997. [88]梁仕偉, “分子動力學模擬銅薄膜之機械與介面特性研究,” 機械與精密工程研究所, 國立高雄應用科技大學, 高雄市, 2015. [89]Hsu, Q. C., Wu, C. D., & Fang, T. H. (2005). Studies on nanoimprint process parameters of copper by molecular dynamics analysis. Computational materials science, 34(4), 314-322. [90]Rapaport, D. C., & Rapaport, D. C. R. (2004). The art of molecular dynamics simulation. Cambridge university press. [91]D. W. Heermann, and A. N. Burkitt, (1991). "Computer simulation methods," Parallel Algorithms in Computational Science, pp. 5-35: Springer. [92]Frenkel, D., & Smit, B. (1996). Understanding molecular simulation academic press. San Diego, 27-33. [93]Clausius, R. (1879). The mechanical theory of heat. Macmillan. [94]Cormier, J., Rickman, J. M., & Delph, T. J. (2001). Stress calculation in atomistic simulations of perfect and imperfect solids. Journal of Applied Physics, 89(1), 99-104. [95]Miyazaki, N., & Shiozaki, Y. (1996). Calculation of mechanical properties of solids using molecular dynamics method. JSME international journal. Ser. A, Mechanics and material engineering, 39(4), 606-612. [96]Zimmerman, J. A., Kelchner, C. L., Klein, P. A., Hamilton, J. C., & Foiles, S. M. (2001). Surface step effects on nanoindentation. Physical Review Letters, 87(16), 165507. [97]Schelling, P. K., Phillpot, S. R., & Keblinski, P. (2002). Comparison of atomic-level simulation methods for computing thermal conductivity. Physical Review B, 65(14), 144306.. [98]Jund, P., & Jullien, R. (1999). Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Physical review B, 59(21), 13707. [99]Gholivand, H., Fuladi, S., Hemmat, Z., et al. (2019). Effect of surface termination on the lattice thermal conductivity of monolayer Ti3C2Tz MXenes. Journal of Applied Physics, 126(6), 065101. [100]Liu, R., & Li, W. (2018). High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/poly (vinyl alcohol)(PVA) composites. ACS omega, 3(3), 2609-2617. [101]Chen, L., Shi, X., Yu, N., et al. (2018). Measurement and analysis of thermal conductivity of Ti3C2Tx MXene films. Materials, 11(9), 1701. [102]Gounzari, M., Belkassmi, Y., Kotri, A., et al. (2022). Mechanical characterization of nanoporous two-dimensional Ti3C2 MXene membranes. Chinese Journal of Physics, 80, 275-284. [103]Lipatov, A., Lu, H., Alhabeb, M., et al. (2018). Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science Advances, 4(6), eaat0491. [104]London, F. (2000). On some properties and applications of molecular forces. In Quantum Chemistry: Classic Scientific Papers (pp. 400-422). [105]Hu, T., Wang, J., Zhang, H., et al. (2015). Vibrational properties of Ti3C2 and Ti3C2T2 (T= O, F, OH) monosheets by first-principles calculations: a comparative study. Physical Chemistry Chemical Physics, 17(15), 9997-10003. [106]Yang, X., Tiwari, J., & Feng, T. (2022). Reduced anharmonic phonon scattering cross-section slows the decrease of thermal conductivity with temperature. Materials Today Physics, 24, 100689. [107]Nomura, M., Anufriev, R., Zhang, Z., et al. (2022). Review of thermal transport in phononic crystals. Materials Today Physics, 22, 100613. [108]Chung, J. D., & Kaviany, M. (2000). Effects of phonon pore scattering and pore randomness on effective conductivity of porous silicon. International Journal of Heat and Mass Transfer, 43(4), 521-538. [109]Khaledialidusti, R., Anasori, B., & Barnoush, A. (2020). Temperature-dependent mechanical properties of Tin+ 1CnO2 (n= 1, 2) MXene monolayers: a first-principles study. Physical Chemistry Chemical Physics, 22(6), 3414-3424. [110]Gao, Y., Cao, Y., Gu, Y., et al. (2019). Functionalization Ti3C2 MXene by the adsorption or substitution of single metal atom. Applied Surface Science, 465, 911-918. [111]Hatam-Lee, S. M., Esfandiar, A., & Rajabpour, A. (2021). Mechanical behaviors of titanium nitride and carbide MXenes: A molecular dynamics study. Applied Surface Science, 566, 150633. [112]Li, H., Li, A., Zhang, D., et al. (2022). First-Principles Study on the Structural, Electronic, and Lithium Storage Properties of Ti3C2T2 (T= O, F, H, OH) MXene. ACS omega, 7(44), 40578-40585.
|