|
[1] https://www.iea.org/oilmarketreport/omrpublic/, (2018). [2] Paulo Emílio V.de Miranda, Science and Engineering of Hydrogen-Based Energy Technologies, Academic Press, (2018). [3] Mark K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486(2012), 43-51. [4] Holton O. T., Stevenson J. W., The Role of Platinum in Proton Exchange Membrane Fuel Cells, Platinum Metals, 57(2013), 259-271. [5] J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth, K. J. J. Mayrhofer, Design criteria for stable Pt/C fuel cell catalysts, Beilstein J Nanotechnol, 5(2014), 44-67. [6] Steffen T. V. Muralidhar C., Amado A. V. P., Christoffer M. P., Christian K., Shuang M. A., Low-cost graphite as durable support for Pt-based cathode electrocatalysts for proton exchange membrane based fuel cells, International Journal of Hydrogen Energy, 43(2018), 23275-23284. [7] Y. Song R. Wu, X. Huang, S. Chen, S. Ibraheem, J. Deng, J. Li, X. Qi, Z. Wei, High-density active sites porous Fe/N/C electrocatalyst boosting the performance of proton exchange membrane fuel cells, Journal of Power Sources, 401(2018), 289-295. [8] G. Zhang S. Sun, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, M. N. Banis, Ruying Li, S. Ye, S. Knights, G. A. Botton, T. K. Sham, X. Sun, Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition, SCIENTIFIC REPORTS, 3(2013), 1775. [9] K. A. Holmes S. Liao, H. Tsaprailis, V. I. Birss, High Performance PtRuIr Catalysts Supported on Carbon Nanotubes for the Anodic Oxidation of Methanol, Journal of the American Chemical Society, 128(2006), 3504-3505. [10] S. S. Kocha H. A. Gasteiger, B. Sompalli, F. T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, 56(2005), 9-35. [11] R. Jasinski, A New Fuel Cell Cathode Catalyst, Nature, 201(1964), 1212-1213. [12] Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu, S. Huang, Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium, Chem Commun (Camb), 48(2012), 1027-9. [13] G. Wu, P. Zelenay, Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction, Accounts of Chemical Research, 46(2013), 1878-1889. [14] Garsuch A., MacIntyre K., Michaud X., Stevens D. A., Dahn J. R., Fuel Cell Studies on a Non-Noble Metal Catalyst Prepared by a Template-Assisted Synthesis Route, Journal of The Electrochemical Society, 155(2008), 953-957. [15] E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J. P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nat Commun, 2(2011), 416. [16] G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang, H. L. Wang, L. Dai, Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition, Nano Energy, 29(2016), 83-110. [17] B. Yi Y. Bai, J. Li, S. Jiang, H. Zhang, Z. Shao, Y. Song, A high performance non-noble metal electrocatalyst for the oxygen reduction reaction derived from a metal organic framework, Chinese Journal of Catalysis, 37(2016), 1127-1133. [18] J. Kong, W. Cheng, Recent advances in the rational design of electrocatalysts towards the oxygen reduction reaction, Chinese Journal of Catalysis, 38(2017), 951-969. [19] B. Wang, Recent development of non-platinum catalysts for oxygen reduction reaction, Journal of Power Sources, 152(2005), 1-15. [20] R. Wang, T. Zhou, H. Li, H. Wang, H. Feng, J. Goh, S. Ji, Nitrogen-rich mesoporous carbon derived from melamine with high electrocatalytic performance for oxygen reduction reaction, Journal of Power Sources, 261(2014), 238-244. [21] W. Wang, S. Liu, Y. Liu, W. Jing, R. Zhao, Z. Lei, Phenolic resin/chitosan composite derived nitrogen-doped carbon as highly durable and anti-poisoning electrocatalyst for oxygen reduction reaction, International Journal of Hydrogen Energy, 42(2017), 26704-26712. [22] L. Luqiang, K. Shuai, L. Xu, S. Jun, L. Shuangyi, ZIF-derived carbons as highly efficient and stable ORR catalyst, Nano technology, 29(2018), 9. [23] G. Zhang, R. Chenitz, M. Lefèvre, S. Sun, J. P. Dodelet, Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?, Nano Energy, 29(2016), 111-125. [24] J. Tian, A. Morozan, M. T. Sougrati, M. Lefevre, R. Chenitz, J. P. Dodelet, D. Jones, F. Jaouen, Optimized synthesis of Fe/N/C cathode catalysts for PEM fuel cells: a matter of iron-ligand coordination strength, Angew Chem Int Ed Engl, 52(2013), 6867-70. [25] Noriko H. B., Fuel Cells:Current Technology Challenges and Future Research Needs, Elsevier, (2012). [26] P. Kurzweil, HISTORY | Fuel Cells, Elsevier, (2009). [27] Wenbin Gu K. C. Neyerlin, Jacob Jorne and Hubert A. Gasteiger, Study of the Exchange Current Density for the Hydrogen Oxidation and Evolution Reactions, The Electrochemical Society, 154(2007), 631-635. [28] H. A. Gasteiger, N. M. Markovic, Just a dream--or future reality?, Science, 324(2009), 48-49. [29] Anthony J. A., Electrocatalysis of aqueous dioxygen reduction, Journal of Electroanalytical Chemistry, 357(1993), 117-179. [30] Hubert A. Gasteiger W. Sheng, Y. Shao-Horn, Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum Acid vs Alkaline Electrolytes, The Electrochemical Society, 157(2010), 1529-1536. [31] R. Jinnouchi, New insight into microscale transport phenomena in pefc by quantum md, Microscale Thermophysical Engineering, 7(2003), 15-31. [32] J. Rossmeisl J. K. Nørskov, A. Logadottir, L. Lindqvist, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, J. Phys. Chem. B, 108(2004), 17886-17892. [33] Bernardo J.M. Sarruf Alberto Coralli, Paulo Emı´lio V. de, et al., Hydrogen Production and Practical Applications in Energy Generation, Science and Engineering of Hydrogen-Based Energy Technologies, 2019, pp. 39-122. [34] Inc EG&G Technical Services, Fuel Cell Handbook, U.S. Department of Energy, (2004). [35] Shangfeng D. Peter M., Materials for PEMFC Electrodes, Elsevier, (2017). [36] S. Rowshanzamir S. J. Peighambardoust, M. Amjadi, Review of the proton exchange membranes for fuel, International Journal of Hydrogen Energy, 35(2010), 9349-9384. [37] https://www.physics.nist.gov/MajResFac/NIF/pemFuelCells.html, (2006). [38] https://www.e-education.psu.edu/eme807/node/671, (2018). [39] Houston Lyndon B. Johnson Space Center, Texas, *Alternative Electrochemical Systems for Ozonation of Water, NASA Tech Briefs, 2003), 24-25. [40] Decio C. Zhiwei Y., Fangxia F., J. P. Ferraris, K. J. Balkus Jr, Novel inorganic/organic hybrid electrolyte membranes, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem, 49(2004), 599-600. [41] W. T. Carl, B. N. Arthur, K. Andrew, 1993, Enhanced membrane-electrode interface,U.S. NO 5266421. [42] K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, Journal of Membrane Science, 185(2000), 29-39. [43] https://elib.uni-stuttgart.de/handle/11682/6491, (2000). [44] S. Holdcroft, Fuel Cell Catalyst Layers: A Polymer Science Perspective, Chemistry of Materials, 26(2013), 381-393. [45] https://www.ce-tech.com.tw/cht/products.php?func=p_detail&p_id=3&pc_parent=2, (2018). [46] https://www.fuelcellstore.com/blog-section/low-temperature-bipolar-plates, (2018). [47] A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 30(2005), 1297-1302. [48] https://www.fuelcellstore.com/fuel-cell-components/membrane-electrode-assembly, (2018). [49] B. Bladergroen, H. Su, S. Pasupathi, V. Linkov, Overview of Membrane Electrode Assembly Preparation Methods for Solid Polymer Electrolyte Electrolyzer, Intech Open, (2012). [50] Larry R. Faulkner Allen J. Bard, ELECTROCHEMICAL METHODS : Fundamentals and Applications, Wiley, (2012). [51] Yeager E., Dioxygen electrocatalysis: mechanism in relation to catalyst structure, Journal of Molecular Catalysis, 38(1986), 5-25. [52] P. N. RossJr N. M. Marković, Surface science studies of model fuel cell electrocatalysts, Surface Science Reports, 45(2002), 117-229. [53] T. Toda, H. Igarashi, H. Uchida, M. Watanabe, Role of Electronic Property of Pt and Pt Alloys on Electrocatalytic Reduction of Oxygen, Journal of The Electrochemical Society, 145(1998), 4185-4188. [54] K. Tatsumi, R. Hoffman, Metalloporphyrins with unusual geometries. 1. Mono-, di-, triatom-bridged porphyrin dimers, Journal of the American Chemical Society, 103(1981), 3328-3341. [55] Griffith J., On the magnetic properties of some haemoglobin complexes, Proceedings of the Royal Society of London, 235(1956), 23-36. [56] Pauling L., Nature of the iron-oxygen bond in oxyhaemoglobin, Nature, 203(1964), 182-183. [57] A. M. Zainoodin, S. K. Kamarudin, W. R. W. Daud, Electrode in direct methanol fuel cells, International Journal of Hydrogen Energy, 35(2010), 4606-4621. [58] R. Kumar, L. Singh, A. W. Zularisam, Enhanced oxygen reduction reaction in air-cathode microbial fuel cells using flower-like Co3O4 as an efficient cathode catalyst, International Journal of Hydrogen Energy, 42(2017), 19287-19295. [59] C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces, Science, 343(2014), 1339-43. [60] M. Lefevre, E. Proietti, F. Jaouen, J. P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 324(2009), 71-4. [61] G. Wu, K. L. More, C. M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science, 332(2011), 443-7. [62] M. Wang J. Shui, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells, Science Advances, 1(2015), 1-7. [63] L. Yang, N. Larouche, R. Chenitz, G. Zhang, M. Lefèvre, J. P. Dodelet, Activity, Performance, and Durability for the Reduction of Oxygen in PEM Fuel Cells, of Fe/N/C Electrocatalysts Obtained from the Pyrolysis of Metal-Organic-Framework and Iron Porphyrin Precursors, Electrochimica Acta, 159(2015), 184-197. [64] A. Zitolo, V. Goellner, V. Armel, M. T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials, Nat Mater, 14(2015), 937-42. [65] Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu, B. Barbiellini, A. Bansil, E. F. Holby, P. Zelenay, S. Mukerjee, Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity, ACS Nano, 9(2015), 12496-505. [66] https://www.hydrogen.energy.gov/pdfs/review09/fc_30_james.pdf, (2009). [67] X. Li, Y. Yao, J. Liu, Z. Zou, Highly microporous nitrogen doped graphene-like carbon material as an efficient fuel cell catalyst, International Journal of Hydrogen Energy, 42(2017), 19903-19912. [68] J. Bai, Q. Zhu, Z. Lv, H. Dong, J. Yu, L. Dong, Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions, International Journal of Hydrogen Energy, 38(2013), 1413-1418. [69] L. Zhang, G. Xia, Z. Guo, X. Li, D. Sun, X. Yu, Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries, International Journal of Hydrogen Energy, 41(2016), 14252-14260. [70] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries, Adv Mater, 25(2013), 4932-7. [71] J. Liu, P. Song, Z. Ning, W. Xu, Recent Advances in Heteroatom-Doped Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction Reaction, Electrocatalysis, 6(2015), 132-147. [72] J. Yan, H. Meng, F. Xie, X. Yuan, W. Yu, W. Lin, W. Ouyang, D. Yuan, Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction, Journal of Power Sources, 245(2014), 772-778. [73] H. T. Chung, P. Zelenay, A simple synthesis of nitrogen-doped carbon micro- and nanotubes, Chem Commun (Camb), 51(2015), 13546-9. [74] J. Wu, D. Zhang, Y. Wang, Y. Wan, B. Hou, Catalytic activity of graphene–cobalt hydroxide composite for oxygen reduction reaction in alkaline media, Journal of Power Sources, 198(2012), 122-126. [75] Y. Chan, Y. Dai, R. Li, J. Zou, G. Tian, H. Fu, Low-temperature synthesized nitrogen-doped iron/iron carbide/partly-graphitized carbon as stable cathode catalysts for enhancing bioelectricity generation, Carbon, 89(2015), 8-19. [76] M. Qiao, C. Tang, G. He, K. Qiu, R. Binions, I. P. Parkin, Q. Zhang, Z. Guo, M. M. Titirici, Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites, Journal of Materials Chemistry A, 4(2016), 12658-12666. [77] H. Jiang, Y. Yao, Y. Zhu, Y. Liu, Y. Su, X. Yang, C. Li, Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts, ACS Appl Mater Interfaces, 7(2015), 21511-20. [78] Y. Nie, L. Li, Z. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem Soc Rev, 44(2015), 2168-201. [79] W. He, C. Jiang, J. Wang, L. Lu, High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons, Angew Chem Int Ed Engl, 53(2014), 9503-7. [80] L. Lai, J. Potts, D. Zhan, L. Wang, C. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R. S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science, 5(2012), 7936. [81] X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova, T. Asefa, Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values, Angew Chem Int Ed Engl, 53(2014), 4372-6. [82] F. Liu, H. Peng, C. You, Z. Fu, P. Huang, H. Song, S. Liao, High-Performance Doped Carbon Catalyst Derived from Nori Biomass with Melamine Promoter, Electrochimica Acta, 138(2014), 353-359. [83] L. Huang, C. Zhao, Y. Yao, Y. You, Z. Wang, C. Wu, Y. Sun, J. Tian, J. Liu, Z. Zou, Fe/N/C catalyst with high activity for oxygen reduction reaction derived from surfactant modified porous carbon-supported melamine-formaldehyde resin, International Journal of Hydrogen Energy, 41(2016), 11090-11098. [84] H. Peng, F. Liu, X. Qiao, Z. Xiong, X. Li, T. Shu, S. Liao, Nitrogen and Fluorine co-doped carbon catalyst with high oxygen reduction performance, prepared by pyrolyzing a mixture of melamine and PTFE, Electrochimica Acta, 182(2015), 963-970. [85] G. A. Ferrero, A. B. Fuertes, M. Sevilla, M. M. Titirici, Efficient metal-free N-doped mesoporous carbon catalysts for ORR by a template-free approach, Carbon, 106(2016), 179-187. [86] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites, Chem Rev, 112(2012), 933-69. [87] C. Wang, D. Liu, W. Lin, Metal-organic Frameworks as a Tunable Platform for Designing Functional Molecular Materials, Journal of the American Chemical Society, 135(2013), 13222-13234. [88] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Ferey, R. E. Morris, C. Serre, Metal-organic frameworks in biomedicine, Chem Rev, 112(2012), 1232-68. [89] Z. Ni K. S. Park, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103(2006), 10186-10191. [90] R. Banerjee, Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., Yaghi, O. M. , High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture, Science, 319(2008), 939-943. [91] P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun, D. Cao, ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction, Energy & Environmental Science, 7(2014), 442-450. [92] G. A. Ferrero, K. Preuss, A. B. Fuertes, M. Sevilla, M. M. Titirici, The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres, Journal of Materials Chemistry A, 4(2016), 2581-2589. [93] L. Zhang, L. Xie, M. Ma, F. Qu, G. Du, A. Asiri, L. Chen, X. Sun, Co-based nanowire films as complementary hydrogen- and oxygen-evolving electrocatalysts in neutral electrolyte, Catalysis Science & Technology, 7(2017), 2689-2694. [94] H. W. Liang, W. Wei, Z. S. Wu, X. Feng, K. Mullen, Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction, J Am Chem Soc, 135(2013), 16002-5. [95] L. Lin, Q. Zhu, A. W. Xu, Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions, J Am Chem Soc, 136(2014), 11027-33. [96] Zhao S. Wu Y., Zhao K., Tu T., Zheng J., Chen J., Zhou H., Chen D. and Li S., Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction, Journal of Power Sources, 311(2016), 137-143. [97] J.R. Potts L.F. Lai, D. Zhan, L. Wang, C.K. Poh, C.H. Tang, et al., Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy Environ Sci, 5(2012), 7936-7942. [98] Z. Luo, S. Lim, Z. Tian, J. Shang, L. Lai, B. MacDonald, C. Fu, Z. Shen, T. Yu, J. Lin, Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property, Journal of Materials Chemistry, 21(2011), 8038.
|