|
[1]F.Dai, Q.Wang, G.-J.Fan, Y.-T.Du, andB.Zhou, “ROS-driven and preferential killing of HepG2 over L-02 cells by a short-term cooperation of Cu(II) and a catechol-type resveratrol analog,” Food Chem., vol. 250, pp. 213–220, 2018, doi: https://doi.org/10.1016/j.foodchem.2018.01.069. [2]J.-H.Kim, C.Chen, andA.-N.Tony Kong, “Resveratrol inhibits genistein-induced multi-drug resistance protein 2 (MRP2) expression in HepG2 cells,” Arch. Biochem. Biophys., vol. 512, no. 2, pp. 160–166, 2011, doi: https://doi.org/10.1016/j.abb.2011.06.004. [3]C.-N.Hsu et al., “Maternal resveratrol therapy protected adult rat offspring against hypertension programmed by combined exposures to asymmetric dimethylarginine and trimethylamine-N-oxide,” J. Nutr. Biochem., vol. 93, p. 108630, 2021, doi: https://doi.org/10.1016/j.jnutbio.2021.108630. [4]G.Annunziata et al., “Effects of Grape Pomace Polyphenolic Extract (Taurisolo®) in Reducing TMAO Serum Levels in Humans: Preliminary Results from a Randomized, Placebo-Controlled, Cross-Over Study,” Nutrients, vol. 11, no. 1. 2019. doi: 10.3390/nu11010139. [5]J. A. P.Tomlinson andD. C.Wheeler, “The role of trimethylamine N-oxide as a mediator of cardiovascular complications in chronic kidney disease,” Kidney Int., vol. 92, no. 4, pp. 809–815, 2017, doi: https://doi.org/10.1016/j.kint.2017.03.053. [6]P.Szczepańska et al., “Studies on the Anticancer and Antioxidant Activities of Resveratrol and Long-Chain Fatty Acid Esters,” International Journal of Molecular Sciences, vol. 24, no. 8. 2023. doi: 10.3390/ijms24087167. [7]X.Heng, W.Liu, andW.Chu, “Identification of choline-degrading bacteria from healthy human feces and used for screening of trimethylamine (TMA)-lyase inhibitors,” Microb. Pathog., vol. 152, p. 104658, 2021, doi: https://doi.org/10.1016/j.micpath.2020.104658. [8]E.Jameson, M.Quareshy, andY.Chen, “Methodological considerations for the identification of choline and carnitine-degrading bacteria in the gut.,” Methods, vol. 149, pp. 42–48, Oct.2018, doi: 10.1016/j.ymeth.2018.03.012. [9]W. H. W.Tang andS. L.Hazen, “The contributory role of gut microbiota in cardiovascular disease,” J. Clin. Invest., vol. 124, no. 10, pp. 4204–4211, 2014, doi: 10.1172/JCI72331. [10]I.Cho et al., “Antibiotics in early life alter the murine colonic microbiome and adiposity,” Nature, vol. 488, no. 7413, pp. 621–626, 2012, doi: 10.1038/nature11400. [11]C.Ming-liang et al., “Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota,” MBio, vol. 7, no. 2, pp. e02210-15, Apr.2016, doi: 10.1128/mBio.02210-15. [12]G.denBesten, K.vanEunen, A. K.Groen, K.Venema, D.-J.Reijngoud, andB. M.Bakker, “The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism,” J. Lipid Res., vol. 54, no. 9, pp. 2325–2340, Sep.2013, doi: 10.1194/jlr.R036012. [13]L. S.Zhang andS. S.Davies, “Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions,” Genome Med., vol. 8, no. 1, p. 46, 2016, doi: 10.1186/s13073-016-0296-x. [14]S.Rath, B.Heidrich, D. H.Pieper, andM.Vital, “Uncovering the trimethylamine-producing bacteria of the human gut microbiota,” Microbiome, vol. 5, no. 1, p. 54, 2017, doi: 10.1186/s40168-017-0271-9. [15]A. Q.Zhang, S. C.Mitchell, andR. L.Smith, “Dietary Precursors of Trimethylamine in Man: A Pilot Study,” Food Chem. Toxicol., vol. 37, no. 5, pp. 515–520, 1999, doi: https://doi.org/10.1016/S0278-6915(99)00028-9. [16]B. J.Bennett et al., “Trimethylamine-N-Oxide, a Metabolite Associated with Atherosclerosis, Exhibits Complex Genetic and Dietary Regulation,” Cell Metab., vol. 17, no. 1, pp. 49–60, 2013, doi: https://doi.org/10.1016/j.cmet.2012.12.011. [17]M.Al-Waiz, S. C.Mitchell, J. R.Idle, andR.Smith, “The relative importance of N-oxidation and N-demethylation in the metabolism of trimethylamine in man.,” Toxicology, vol. 43 2, pp. 117–121, 1987. [18]D.Lang et al., “Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: Selective catalysis by fmo3,” Biochem. Pharmacol., vol. 56, no. 8, pp. 1005–1012, 1998, doi: https://doi.org/10.1016/S0006-2952(98)00218-4. [19]G.Cruciani, A.Valeri, L.Goracci, R. M.Pellegrino, F.Buonerba, andM.Baroni, “Flavin Monooxygenase Metabolism: Why Medicinal Chemists Should Matter,” J. Med. Chem., vol. 57, no. 14, pp. 6183–6196, Jul.2014, doi: 10.1021/jm5007098. [20]S.Jiang et al., “Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II–induced hypertension,” Redox Biol., vol. 46, p. 102115, 2021, doi: https://doi.org/10.1016/j.redox.2021.102115. [21]F.Dong et al., “Trimethylamine N-oxide promotes hyperoxaluria-induced calcium oxalate deposition and kidney injury by activating autophagy,” Free Radic. Biol. Med., vol. 179, pp. 288–300, 2022, doi: https://doi.org/10.1016/j.freeradbiomed.2021.11.010. [22]Y.-C.Koh et al., “Prevention of Vascular Inflammation by Pterostilbene via Trimethylamine-N-Oxide Reduction and Mechanism of Microbiota Regulation,” Mol. Nutr. Food Res., vol. 63, no. 20, p. 1900514, Oct.2019, doi: https://doi.org/10.1002/mnfr.201900514. [23]D. Y.Li andW. H. W.Tang, “Gut Microbiota and Atherosclerosis,” Curr. Atheroscler. Rep., vol. 19, no. 10, p. 39, 2017, doi: 10.1007/s11883-017-0675-9. [24]G.Kalnins et al., “Structure and Function of CutC Choline Lyase from Human Microbiota Bacterium Klebsiella pneumoniae*,” J. Biol. Chem., vol. 290, no. 35, pp. 21732–21740, Aug.2015, doi: 10.1074/jbc.M115.670471. [25]A. F.Wagner, M.Frey, F. A.Neugebauer, W.Schäfer, andJ.Knappe, “The free radical in pyruvate formate-lyase is located on glycine-734.,” Proc. Natl. Acad. Sci., vol. 89, no. 3, pp. 996–1000, 1992, doi: 10.1073/pnas.89.3.996. [26]S.Craciun, J. A.Marks, andE. P.Balskus, “Characterization of Choline Trimethylamine-Lyase Expands the Chemistry of Glycyl Radical Enzymes,” ACS Chem. Biol., vol. 9, no. 7, pp. 1408–1413, Jul.2014, doi: 10.1021/cb500113p. [27]S. K.Krueger andD. E.Williams, “Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism,” Pharmacol. Ther., vol. 106, no. 3, pp. 357–387, 2005, doi: https://doi.org/10.1016/j.pharmthera.2005.01.001. [28]N. L.Schlaich, “Flavin-containing monooxygenases in plants: looking beyond detox,” Trends Plant Sci., vol. 12, no. 9, pp. 412–418, 2007, doi: https://doi.org/10.1016/j.tplants.2007.08.009. [29]J. R.Cashman andJ.Zhang, “HUMAN FLAVIN-CONTAINING MONOOXYGENASES,” Annu. Rev. Pharmacol. Toxicol., vol. 46, no. 1, pp. 65–100, 2006, doi: 10.1146/annurev.pharmtox.46.120604.141043. [30]D.Fennema, I. R.Phillips, andE. A.Shephard, “Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease,” Drug Metab. Dispos., vol. 44, no. 11, pp. 1839–1850, 2016, doi: 10.1124/dmd.116.070615. [31]K.Ma, P. K.Saha, L.Chan, andD. D.Moore, “Farnesoid X receptor is essential for normal glucose homeostasis,” J. Clin. Invest., vol. 116, no. 4, pp. 1102–1109, 2006, doi: 10.1172/JCI25604. [32]A.Mencarelli, B.Renga, E.Distrutti, andS.Fiorucci, “Antiatherosclerotic effect of farnesoid X receptor.,” Am. J. Physiol. Heart Circ. Physiol., vol. 296, no. 2, pp. H272-81, Feb.2009, doi: 10.1152/ajpheart.01075.2008. [33]M.Canyelles, M.Tondo, L.Cedó, M.Farràs, J. C.Escolà-Gil, andF.Blanco-Vaca, “Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function,” International Journal of Molecular Sciences, vol. 19, no. 10. 2018. doi: 10.3390/ijms19103228. [34]Z.-L.Yu et al., “Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice,” J. Food Sci., vol. 85, no. 7, pp. 2207–2215, 2020, doi: https://doi.org/10.1111/1750-3841.15186. [35]J. Y.Chen, B.Levy-Wilson, S.Goodart, andA. D.Cooper, “Mice Expressing the Human CYP7A1 Gene in the Mouse CYP7A1 Knock-out Background Lack Induction of CYP7A1 Expression by Cholesterol Feeding and Have Increased Hypercholesterolemia When Fed a High Fat Diet *,” J. Biol. Chem., vol. 277, no. 45, pp. 42588–42595, Nov.2002, doi: 10.1074/jbc.M205117200. [36]Y.Cao et al., “Hypocholesterolemia of Rhizoma Coptidis alkaloids is related to the bile acid by up-regulated CYP7A1 in hyperlipidemic rats,” Phytomedicine, vol. 19, no. 8, pp. 686–692, 2012, doi: https://doi.org/10.1016/j.phymed.2012.03.011. [37]Y.Qi et al., “Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1851, no. 1, pp. 19–29, 2015, doi: https://doi.org/10.1016/j.bbalip.2014.04.008. [38]M.Norlin, S.vonBahr, I.Björkhem, andK.Wikvall, “On the substrate specificity of human CYP27A1: implications for bile acid and cholestanol formation,” J. Lipid Res., vol. 44, no. 8, pp. 1515–1522, Aug.2003, doi: 10.1194/jlr.M300047-JLR200. [39]T.Li, W.Chen, andJ. Y. L.Chiang, “PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine,” J. Lipid Res., vol. 48, no. 2, pp. 373–384, Feb.2007, doi: 10.1194/jlr.M600282-JLR200. [40]W.Chen andJ. Y. L.Chiang, “Regulation of human sterol 27-hydroxylase gene (CYP27A1) by bile acids and hepatocyte nuclear factor 4α (HNF4α),” Gene, vol. 313, pp. 71–82, 2003, doi: https://doi.org/10.1016/S0378-1119(03)00631-0. [41]K. M.Anderson, P. M.Odell, P. W. F.Wilson, andW. B.Kannel, “Cardiovascular disease risk profiles,” Am. Heart J., vol. 121, no. 1, Part 2, pp. 293–298, 1991, doi: https://doi.org/10.1016/0002-8703(91)90861-B. [42]Z.Wang et al., “Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide,” Eur. Heart J., vol. 35, no. 14, pp. 904–910, 2014, doi: 10.1093/eurheartj/ehu002. [43]W.Zhu et al., “Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk,” Cell, vol. 165, no. 1, pp. 111–124, 2016, doi: https://doi.org/10.1016/j.cell.2016.02.011. [44]J.Ma andH.Li, “The Role of Gut Microbiota in Atherosclerosis and Hypertension,” Front. Pharmacol., vol. 9, 2018, doi: 10.3389/fphar.2018.01082. [45]C. J. L.Murray, A. D.Lopez, W. H.Organization, W.Bank, andH. S.of Public Health, “The Global burden of disease : a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020 : summary / edited by Christopher J. L. Murray, Alan D. Lopez.” World Health Organization, p. Published by the Harvard School of Public Health o, 1996. [46]H.-H.Chang andR.-T.Lin, “Policy changes for preventing and recognizing overwork-related cardiovascular diseases in Taiwan: An overview,” J. Occup. Health, vol. 61, no. 4, pp. 278–287, 2019, doi: 10.1002/1348-9585.12046. [47]R. J.Aiello et al., “Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice.,” Arterioscler. Thromb. Vasc. Biol., vol. 19, no. 6, pp. 1518–1525, Jun.1999, doi: 10.1161/01.atv.19.6.1518. [48]M.Rafieian-Kopaei, M.Setorki, M.Doudi, A.Baradaran, andH.Nasri, “Atherosclerosis: process, indicators, risk factors and new hopes.,” Int. J. Prev. Med., vol. 5, no. 8, pp. 927–946, Aug.2014. [49]N.Yoshida, T.Yamashita, andK.-I.Hirata, “Gut Microbiome and Cardiovascular Diseases.,” Dis. (Basel, Switzerland), vol. 6, no. 3, Jun.2018, doi: 10.3390/diseases6030056. [50]C. C.Pelletier et al., “Elevation of Trimethylamine-N-Oxide in Chronic Kidney Disease: Contribution of Decreased Glomerular Filtration Rate,” Toxins, vol. 11, no. 11. 2019. doi: 10.3390/toxins11110635. [51]Z.Wang et al., “Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease,” Nature, vol. 472, no. 7341, pp. 57–63, 2011, doi: 10.1038/nature09922. [52]S.Rath, T.Rud, D. H.Pieper, andM.Vital, “Potential TMA-Producing Bacteria Are Ubiquitously Found in Mammalia,” Front. Microbiol., vol. 10, 2020, doi: 10.3389/fmicb.2019.02966. [53]Y.Liu andM.Dai, “Trimethylamine N-Oxide Generated by the Gut Microbiota Is Associated with Vascular Inflammation: New Insights into Atherosclerosis,” Mediators Inflamm., vol. 2020, p. 4634172, 2020, doi: 10.1155/2020/4634172. [54]C.Hill et al., “The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic,” Nat. Rev. Gastroenterol. Hepatol., vol. 11, no. 8, pp. 506–514, 2014, doi: 10.1038/nrgastro.2014.66. [55]B.Olas, “Probiotics, Prebiotics and Synbiotics—A Promising Strategy in Prevention and Treatment of Cardiovascular Diseases?,” Int. J. Mol. Sci., vol. 21, no. 24, 2020, doi: 10.3390/ijms21249737. [56]F.Huang et al., “Enterococcus faecium WEFA23 from infants lessens high-fat-diet-induced hyperlipidemia via cholesterol 7-alpha-hydroxylase gene by altering the composition of gut microbiota in rats,” J. Dairy Sci., vol. 101, no. 9, pp. 7757–7767, 2018, doi: https://doi.org/10.3168/jds.2017-13713. [57]X.Liang et al., “Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis,” Nutrition, vol. 79–80, p. 110941, 2020, doi: https://doi.org/10.1016/j.nut.2020.110941. [58]N. E.Boutagy et al., “Probiotic supplementation and trimethylamine-N-oxide production following a high-fat diet,” Obesity, vol. 23, no. 12, pp. 2357–2363, Dec.2015, doi: https://doi.org/10.1002/oby.21212. [59]K.Szkudelska andT.Szkudelski, “Resveratrol, obesity and diabetes,” Eur. J. Pharmacol., vol. 635, no. 1, pp. 1–8, 2010, doi: https://doi.org/10.1016/j.ejphar.2010.02.054. [60]D.Bonnefont-Rousselot, “Resveratrol and Cardiovascular Diseases,” Nutrients, vol. 8, no. 5, 2016, doi: 10.3390/nu8050250. [61]L.Subramanian, S.Youssef, S.Bhattacharya, J.Kenealey, A. S.Polans, andP. R.vanGinkel, “Resveratrol: Challenges in Translation to the Clinic — A Critical Discussion,” Clin. Cancer Res., vol. 16, no. 24, pp. 5942–5948, 2010, doi: 10.1158/1078-0432.CCR-10-1486. [62]N.-R.Shin et al., “An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice,” Gut, vol. 63, no. 5, pp. 727–735, 2014, doi: 10.1136/gutjnl-2012-303839. [63]R.Jia et al., “Antioxidative, anti-inflammatory and hepatoprotective effects of resveratrol on oxidative stress-induced liver damage in tilapia (Oreochromis niloticus),” Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., vol. 215, pp. 56–66, 2019, doi: https://doi.org/10.1016/j.cbpc.2018.10.002. [64]J. A.Rubiolo, G.Mithieux, andF. V.Vega, “Resveratrol protects primary rat hepatocytes against oxidative stress damage:: Activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes,” Eur. J. Pharmacol., vol. 591, no. 1, pp. 66–72, 2008, doi: https://doi.org/10.1016/j.ejphar.2008.06.067. [65]W.Wang, Z.Wu, Y.Wang, J.Wang, andZ.Wang, “Evaluation of Free Radical Scavenging and Antioxidation Capacity of Resveratrol and Polydatin BT - Proceedings of the 2020 9th International Conference on Applied Science, Engineering and Technology (ICASET 2020),” 2020, pp. 63–67. doi: https://doi.org/10.2991/aer.k.201203.013. [66]K.Nøhr-Meldgaard, A.Ovsepian, H.Ingmer, andM.Vestergaard, “Resveratrol enhances the efficacy of aminoglycosides against Staphylococcus aureus,” Int. J. Antimicrob. Agents, vol. 52, no. 3, pp. 390–396, 2018, doi: https://doi.org/10.1016/j.ijantimicag.2018.06.005. [67]L.Paulo, S.Ferreira, E.Gallardo, J. A.Queiroz, andF.Domingues, “Antimicrobial activity and effects of resveratrol on human pathogenic bacteria,” World J. Microbiol. Biotechnol., vol. 26, no. 8, pp. 1533–1538, 2010, doi: 10.1007/s11274-010-0325-7. [68]T.-T.Huang et al., “cis-Resveratrol produces anti-inflammatory effects by inhibiting canonical and non-canonical inflammasomes in macrophages.,” Innate Immun., vol. 20, no. 7, pp. 735–750, Oct.2014, doi: 10.1177/1753425913507096. [69]O.-H.Kang et al., “Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: Pivotal roles of NF-κB and MAPK,” Pharmacol. Res., vol. 59, no. 5, pp. 330–337, 2009, doi: https://doi.org/10.1016/j.phrs.2009.01.009. [70]Y.-A.Hsu et al., “Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model,” Curr. Issues Mol. Biol., vol. 43, no. 2, pp. 716–727, 2021, doi: 10.3390/cimb43020052. [71]J.Li et al., “A novel anti‑cancer effect of resveratrol: reversal of epithelial‑mesenchymal transition in prostate cancer cells,” Mol Med Rep, vol. 10, no. 4, pp. 1717–1724, 2014, doi: 10.3892/mmr.2014.2417. [72]H.-B.Zhou, Y.Yan, Y.-N.Sun, andJ.-R.Zhu, “Resveratrol induces apoptosis in human esophageal carcinoma cells.,” World J. Gastroenterol., vol. 9, no. 3, pp. 408–411, Mar.2003, doi: 10.3748/wjg.v9.i3.408. [73]D. A.Benitez, E.Pozo-Guisado, A.Alvarez-Barrientos, P. M.Fernandez-Salguero, andE. A.Castellón, “Mechanisms Involved in Resveratrol-Induced Apoptosis and Cell Cycle Arrest in Prostate Cancer—Derived Cell Lines,” J. Androl., vol. 28, no. 2, pp. 282–293, 2007, doi: https://doi.org/10.2164/jandrol.106.000968. [74]N.Hadinia, M. R.Edalatian Dovom, andM.Yavarmanesh, “The effect of fermentation conditions (temperature, salt concentration, and pH) with lactobacillus strains for producing Short Chain Fatty Acids,” LWT, vol. 165, p. 113709, 2022, doi: https://doi.org/10.1016/j.lwt.2022.113709. [75]J.-J.Tang et al., “Finding more active antioxidants and cancer chemoprevention agents by elongating the conjugated links of resveratrol,” Free Radic. Biol. Med., vol. 50, no. 10, pp. 1447–1457, 2011, doi: https://doi.org/10.1016/j.freeradbiomed.2011.02.028. [76]D.Ríos-Covián, P.Ruas-Madiedo, A.Margolles, M.Gueimonde, C. G.delos Reyes-Gavilán, andN.Salazar, “Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health,” Front. Microbiol., vol. 7, 2016, doi: 10.3389/fmicb.2016.00185. [77]M. A. R.Vinolo, H. G.Rodrigues, E.Hatanaka, F. T.Sato, S. C.Sampaio, andR.Curi, “Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils,” J. Nutr. Biochem., vol. 22, no. 9, pp. 849–855, 2011, doi: https://doi.org/10.1016/j.jnutbio.2010.07.009. [78]M. A.Cox et al., “Short-chain fatty acids act as antiinflammatory mediators by regulating prostaglandin E(2) and cytokines.,” World J. Gastroenterol., vol. 15, no. 44, pp. 5549–5557, Nov.2009, doi: 10.3748/wjg.15.5549. [79]Y.Gao, B.Davis, W.Zhu, N.Zheng, D.Meng, andW. A.Walker, “Short-chain fatty acid butyrate, a breast milk metabolite, enhances immature intestinal barrier function genes in response to inflammation in vitro and in vivo.,” Am. J. Physiol. Gastrointest. Liver Physiol., vol. 320, no. 4, pp. G521–G530, Apr.2021, doi: 10.1152/ajpgi.00279.2020. [80]A.Nakkarach, H. L.Foo, A. A.-L.Song, N. E. A.Mutalib, S.Nitisinprasert, andU.Withayagiat, “Anti-cancer and anti-inflammatory effects elicited by short chain fatty acids produced by Escherichia coli isolated from healthy human gut microbiota,” Microb. Cell Fact., vol. 20, no. 1, p. 36, 2021, doi: 10.1186/s12934-020-01477-z. [81]Y.Tian, Q.Xu, L.Sun, Y.Ye, andG.Ji, “Short-chain fatty acids administration is protective in colitis-associated colorectal cancer development,” J. Nutr. Biochem., vol. 57, pp. 103–109, 2018, doi: https://doi.org/10.1016/j.jnutbio.2018.03.007. [82]N. J.Emenaker, G. M.Calaf, D.Cox, M. D.Basson, andN.Qureshi, “Short-Chain Fatty Acids Inhibit Invasive Human Colon Cancer by Modulating uPA, TIMP-1, TIMP-2, Mutant p53, Bcl-2, Bax, p21 and PCNA Protein Expression in an In Vitro Cell Culture Model,” J. Nutr., vol. 131, no. 11, pp. 3041S-3046S, 2001, doi: 10.1093/jn/131.11.3041S. [83]G.denBesten et al., “Short-Chain Fatty Acids Protect Against High-Fat Diet–Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation,” Diabetes, vol. 64, no. 7, pp. 2398–2408, 2015, doi: 10.2337/db14-1213. [84]Y.Lu, C.Fan, P.Li, Y.Lu, X.Chang, andK.Qi, “Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota,” Sci. Rep., vol. 6, no. 1, p. 37589, 2016, doi: 10.1038/srep37589. [85]H.VLin et al., “Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms,” PLoS One, vol. 7, no. 4, pp. 1–9, 2012, doi: 10.1371/journal.pone.0035240. [86]G.Immanuel, M.Sivagnanavelmurugan, andA.Palavesam, “Antibacterial effect of short-chain fatty acids on gnotobiotic Artemia franciscana nauplii against Vibrio parahaemolyticus,” Aquac. Res., vol. 43, no. 4, pp. 518–525, 2012, doi: https://doi.org/10.1111/j.1365-2109.2011.02857.x. [87]L. A.Royce, P.Liu, M. J.Stebbins, B. C.Hanson, andL. R.Jarboe, “The damaging effects of short chain fatty acids on Escherichia coli membranes,” Appl. Microbiol. Biotechnol., vol. 97, no. 18, pp. 8317–8327, 2013, doi: 10.1007/s00253-013-5113-5. [88]F.McHan andE. B.Shotts, “Effect of Short-Chain Fatty Acids on the Growth of Salmonella typhimurium in an in vitro System,” Avian Dis., vol. 37, no. 2, pp. 396–398, Sep.1993, doi: 10.2307/1591664. [89]B.Tian andJ.Liu, “Resveratrol: a review of plant sources, synthesis, stability, modification and food application,” J. Sci. Food Agric., vol. 100, no. 4, pp. 1392–1404, 2020, doi: https://doi.org/10.1002/jsfa.10152. [90]D.Singh, R.Mendonsa, M.Koli, M.Subramanian, andS. K.Nayak, “Antibacterial activity of resveratrol structural analogues: A mechanistic evaluation of the structure-activity relationship,” Toxicol. Appl. Pharmacol., vol. 367, pp. 23–32, 2019, doi: https://doi.org/10.1016/j.taap.2019.01.025. [91]B.-F.Ruan et al., “Synthesis and Cytotoxic Evaluation of a Series of Resveratrol Derivatives,” Chem. \& Biodivers., vol. 3, no. 9, pp. 975–981, 2006, doi: https://doi.org/10.1002/cbdv.200690106. [92]X.-F.Huang et al., “Synthesis and cytotoxic evaluation of a series of resveratrol derivatives modified in C2 position,” Eur. J. Med. Chem., vol. 42, no. 2, pp. 263–267, 2007, doi: https://doi.org/10.1016/j.ejmech.2006.08.006. [93]B.DeFilippis, A.Ammazzalorso, M.Fantacuzzi, L.Giampietro, C.Maccallini, andR.Amoroso, “Anticancer Activity of Stilbene-Based Derivatives,” ChemMedChem, vol. 12, no. 8, pp. 558–570, 2017, doi: https://doi.org/10.1002/cmdc.201700045. [94]A.Kamal et al., “Design, synthesis and antiproliferative activity of the new conjugates of E7010 and resveratrol as tubulin polymerization inhibitors,” Org. Biomol. Chem., vol. 14, no. 4, pp. 1382–1394, 2016, doi: 10.1039/C5OB02022K. [95]C.Antus et al., “Anti-inflammatory effects of a triple-bond resveratrol analog: Structure and function relationship,” Eur. J. Pharmacol., vol. 748, pp. 61–67, 2015, doi: https://doi.org/10.1016/j.ejphar.2014.12.009. [96]D.Vergara et al., “Anticancer effects of novel resveratrol analogues on human ovarian cancer cells,” Mol. BioSyst., vol. 13, no. 6, pp. 1131–1141, 2017, doi: 10.1039/C7MB00128B. [97]C. M.Thompson, M. D.Orellana, S. E.Lloyd, andW.Wu, “Stereospecific synthesis of cis-stilbenes from benzaldehydes and phenylacetic acids via sequential Perkin condensation and decarboxylation,” Tetrahedron Lett., vol. 57, no. 43, pp. 4866–4868, 2016, doi: https://doi.org/10.1016/j.tetlet.2016.09.069. [98]Y.Shingai, A.Fujimoto, M.Nakamura, andT.Masuda, “Structure and Function of the Oxidation Products of Polyphenols and Identification of Potent Lipoxygenase Inhibitors from Fe-Catalyzed Oxidation of Resveratrol,” J. Agric. Food Chem., vol. 59, no. 15, pp. 8180–8186, Aug.2011, doi: 10.1021/jf202561p. [99]Y.-L.Tain et al., “Synthesis and Characterization of Novel Resveratrol Butyrate Esters That Have the Ability to Prevent Fat Accumulation in a Liver Cell Culture Model,” Molecules, vol. 25, no. 18, 2020, doi: 10.3390/molecules25184199. [100]B.Neises andW.Steglich, “Simple Method for the Esterification of Carboxylic Acids,” Angew. Chemie Int. Ed. English, vol. 17, no. 7, pp. 522–524, Jul.1978, doi: 10.1002/anie.197805221. [101]G. F.Balata, E. A.Essa, H. A.Shamardl, S. H.Zaidan, andM. A.Abourehab, “Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol.,” Drug Des. Devel. Ther., vol. 10, pp. 117–128, 2016, doi: 10.2147/DDDT.S95905. [102]W.-T.Tian, X.-W.Zhang, H.-P.Liu, Y.-H.Wen, H.-R.Li, andJ.Gao, “Structural characterization of an acid polysaccharide from Pinellia ternata and its induction effect on apoptosis of Hep G2 cells,” Int. J. Biol. Macromol., vol. 153, pp. 451–460, 2020, doi: https://doi.org/10.1016/j.ijbiomac.2020.02.219. [103]“UniProt: the Universal Protein Knowledgebase in 2023,” Nucleic Acids Res., vol. 51, no. D1, pp. D523–D531, Jan.2023, doi: 10.1093/nar/gkac1052. [104]X.Li et al., “Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome,” npj Biofilms Microbiomes, vol. 7, no. 1, p. 36, 2021, doi: 10.1038/s41522-021-00205-8. [105]Q.Wang et al., “Bifidobacterium breve and Bifidobacterium longum Attenuate Choline-Induced Plasma Trimethylamine N-Oxide Production by Modulating Gut Microbiota in Mice,” Nutrients, vol. 14, no. 6. 2022. doi: 10.3390/nu14061222. [106]K. A.Romano, E. I.Vivas, D.Amador-Noguez, andF. E.Rey, “Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide.,” MBio, vol. 6, no. 2, p. e02481, Mar.2015, doi: 10.1128/mBio.02481-14. [107]Y.-L.Tain et al., “Synthesis of Short-Chain-Fatty-Acid Resveratrol Esters and Their Antioxidant Properties,” Antioxidants, vol. 10, no. 3, 2021, doi: 10.3390/antiox10030420. [108]J.-X.Liao et al., “Resveratrol Butyrate Esters Inhibit BPA-Induced Liver Damage in Male Offspring Rats by Modulating Antioxidant Capacity and Gut Microbiota,” Int. J. Mol. Sci., vol. 22, no. 10, 2021, doi: 10.3390/ijms22105273. [109]M.-K.Shih et al., “Resveratrol Butyrate Esters Inhibit Obesity Caused by Perinatal Exposure to Bisphenol A in Female Offspring Rats,” Molecules, vol. 26, no. 13, 2021, doi: 10.3390/molecules26134010. [110]D.-L.Lu et al., “Influence of Glucuronidation and Reduction Modifications of Resveratrol on its Biological Activities,” ChemBioChem, vol. 14, no. 9, pp. 1094–1104, 2013, doi: https://doi.org/10.1002/cbic.201300080. [111]J.Lu, C.Li, Y.-F.Chai, D.-Y.Yang, andC.-R.Sun, “The antioxidant effect of imine resveratrol analogues,” Bioorg. Med. Chem. Lett., vol. 22, no. 17, pp. 5744–5747, 2012, doi: https://doi.org/10.1016/j.bmcl.2012.06.026. [112]D.-J.Ding et al., “Synthesis and antioxidant activity of hydroxylated phenanthrenes as cis-restricted resveratrol analogues,” Food Chem., vol. 135, no. 3, pp. 1011–1019, 2012, doi: https://doi.org/10.1016/j.foodchem.2012.05.074. [113]A.Bhattacharyya andM.Bajpai, “Development and evaluation of a self-emulsifying drug delivery system of amphotericin B,” Asian J. Pharm., vol. 6, no. 2, 2014, doi: 10.22377/ajp.v6i2.64. [114]B.Poljsak, D.Šuput, andI.Milisav, “Achieving the Balance between ROS and Antioxidants: When to Use the Synthetic Antioxidants,” Oxid. Med. Cell. Longev., vol. 2013, p. 956792, 2013, doi: 10.1155/2013/956792. [115]Y.Zhuang, Q.Ma, Y.Guo, andL.Sun, “Protective effects of rambutan (Nephelium lappaceum) peel phenolics on H2O2-induced oxidative damages in HepG2 cells and d-galactose-induced aging mice,” Food Chem. Toxicol., vol. 108, pp. 554–562, 2017, doi: https://doi.org/10.1016/j.fct.2017.01.022. [116]S.He et al., “Activity Guided Isolation of Phenolic Compositions from Anneslea fragrans Wall. and Their Cytoprotective Effect against Hydrogen Peroxide Induced Oxidative Stress in HepG2 Cells,” Molecules, vol. 26, no. 12, 2021, doi: 10.3390/molecules26123690. [117]L.Goya, R.Mateos, andL.Bravo, “Effect of the olive oil phenol hydroxytyrosol on human hepatoma HepG2 cells,” Eur. J. Nutr., vol. 46, no. 2, pp. 70–78, 2007, doi: 10.1007/s00394-006-0633-8. [118]L. M. V.deAlmeida et al., “Protective Effects of Resveratrol on Hydrogen Peroxide Induced Toxicity in Primary Cortical Astrocyte Cultures,” Neurochem. Res., vol. 33, no. 1, pp. 8–15, 2008, doi: 10.1007/s11064-007-9399-5. [119]C. V. B.Prasad, M.VKodliwadmath, andG. B.Kodliwadmath, “Erythrocyte glutathione peroxidase, glutathione reductase activities and blood glutathione content in leprosy,” J. Infect., vol. 56, no. 6, pp. 469–473, 2008, doi: https://doi.org/10.1016/j.jinf.2008.03.009. [120]H.-L.Wang et al., “Comparative studies of polydatin and resveratrol on mutual transformation and antioxidative effect in vivo,” Phytomedicine, vol. 22, no. 5, pp. 553–559, 2015, doi: https://doi.org/10.1016/j.phymed.2015.03.014. [121]B. A.Arús et al., “Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway,” Mol. Cell. Biochem., vol. 428, no. 1, pp. 67–77, 2017, doi: 10.1007/s11010-016-2917-5. [122]I. N.Zelko, T. J.Mariani, andR. J.Folz, “Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression,” Free Radic. Biol. Med., vol. 33, no. 3, pp. 337–349, 2002, doi: https://doi.org/10.1016/S0891-5849(02)00905-X. [123]R.Noor, S.Mittal, andJ.Iqbal, “Superoxide dismutase--applications and relevance to human diseases,” Med. Sci. Monit., vol. 8, no. 9, p. RA210—5, 2002, [Online]. Available: http://europepmc.org/abstract/MED/12218958 [124]P.He eiY, S.Gao huMei, Z.Hou hiP, L.Ma iXin, andB. Q.Li, “Resveratrol protects against alcohol-induced oxidative stress in human HepG2 cells,” p. 1928, 2014, doi: 10.11569/wcjd.v22.i14.1928. [125]M. A.Khan et al., “Regulatory effects of resveratrol on antioxidant enzymes: A mechanism of growth inhibition and apoptosis induction in cancer cells,” Mol. Cells, vol. 35, no. 3, pp. 219–225, 2013, doi: 10.1007/s10059-013-2259-z. [126]G.Torres Santiago, J. I.Serrano Contreras, M. E.Meléndez Camargo, andL. G.Zepeda Vallejo, “NMR-based metabonomic approach reveals changes in the urinary and fecal metabolome caused by resveratrol,” J. Pharm. Biomed. Anal., vol. 162, pp. 234–241, 2019, doi: https://doi.org/10.1016/j.jpba.2018.09.025. [127]Y.Chen et al., “FMO3 and its metabolite TMAO contribute to the formation of gallstones,” Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1865, no. 10, pp. 2576–2585, 2019, doi: https://doi.org/10.1016/j.bbadis.2019.06.016. [128]P.-Y.Chen et al., “Oolong Tea Extract and Citrus Peel Polymethoxyflavones Reduce Transformation of l-Carnitine to Trimethylamine-N-Oxide and Decrease Vascular Inflammation in l-Carnitine Feeding Mice,” J. Agric. Food Chem., vol. 67, no. 28, pp. 7869–7879, Jul.2019, doi: 10.1021/acs.jafc.9b03092. [129]L.Iglesias-Carres, M. D.Hughes, C. N.Steele, M. A.Ponder, K. P.Davy, andA. P.Neilson, “Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation,” J. Nutr. Biochem., vol. 91, p. 108600, 2021, doi: https://doi.org/10.1016/j.jnutbio.2021.108600. [130]N.Parsamanesh et al., “Resveratrol and endothelial function: A literature review,” Pharmacol. Res., vol. 170, p. 105725, 2021, doi: https://doi.org/10.1016/j.phrs.2021.105725. [131] AbcamDCFDA/H2DCFDA—Cellular Reactive Oxygen Species Detection Assay Kit. Available online: https://www.abcam.com/dcfda–h2dcfda-cellular-ros-assay-kitab113851.%0Ahtml. (accessed on 8 September 2021).
|