|
[1] R. Pielke, M. G. Burgess, J. Ritchie, Plausible 2005-2050 emissions scenarios project between 2 degrees C and 3 degrees C of warming by 2100, Environ. Res. Lett., 17 (2022) 8. [2] S. Koohi-Fayegh, M. A. Rosen, A review of energy storage types, applications and recent developments, J. Energy Storage, 27 (2020) 23. [3] 施沛宏、闕棟鴻, 國際能源總署(IEA)2022全球氫能回顧報告, (2022). [4] B. C. H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 414 (2001) 345-352. [5] V. Di Noto, E. Negro, B. Patil, F. Lorandi, S. Boudjelida, Y. H. Bang, K. Vezzu, G. Pagot, L. Crociani, A. Nale, Hierarchical Metal- Carbon Nitride Shell/Carbon Core Electrocatalysts: A Promising New General Approach to Tackle the ORR Bottleneck in Low-Temperature Fuel Cells, ACS Catal., 12 (2022) 12291-12301. [6] V. Di Noto, E. Negro, K. Vezzù, F. Bertasi, G. Nawn, Origins, Developments, and Perspectives of Carbon Nitride-Based Electrocatalysts for Application in Low-Temperature FCs, The Electrochemical Society Interface, 24 (2015) 59. [7] F. Xiao, Y. C. Wang, Z. P. Wu, G. Y. Chen, F. Yang, S. Q. Zhu, K. Siddharth, Z. J. Kong, A. L. Lu, J. C. Li, C. J. Zhong, Z. Y. Zhou, M. H. Shao, Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells, Adv. Mater., 33 (2021) 38. [8] M. L. Liu, Z. P. Zhao, X. F. Duan, Y. Huang, Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts, Adv. Mater., 31 (2019) 8. [9] R. Jasinski, A New Fuel Cell Cathode Catalyst, Nature, 201 (1964) 1212-1213. [10] O. Z. Sharaf, M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sust. Energ. Rev., 32 (2014) 810 - 853. [11] 陳玟錚, 二氨基萘系聚亞胺煅燒型鐵碳氮化合物作為陰離子交換膜燃料電池陰極觸媒之研究,化學工程與材料工程系,國立高雄科技大學,高雄市, 2021, pp. 84. [12] M. Hren, M. Bozic, D. Fakin, K. S. Kleinschek, S. Gorgieva, Alkaline membrane fuel cells: anion exchange membranes and fuels, Sustain. Energ. Fuels, 5 (2021) 604 - 637. [13] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, Journal of Membrane Science, 377 (2011) 1- 35. [14] K. Yassin, J. C. Douglin, I. G. Rasin, P. G. Santori, B. Eriksson, N. Bibent, F. Jaouen, S. Brandon, D. R. Dekel, The effect of membrane thickness on AEMFC Performance: An integrated theoretical and experimental study, Energy Conv. Manag., 270 (2022) 8. [15] N. Y. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, C. Bock, Anion-Exchange Membrane Water Electrolyzers, Chem. Rev., (2022) 66. [16] J. F. Zhang, W. K. Zhu, T. Huang, C. Y. Zheng, Y. B. A. Pei, G. Q. Shen, Z. X. Nie, D. Xiao, Y. Yin, M. D. Guiver, Recent Insights on Catalyst Layers for Anion Exchange Membrane Fuel Cells, Adv. Sci., 8 (2021) 26. [17] S. Litster, G. McLean, PEM fuel cell electrodes, J. Power Sources, 130 (2004) 61-76. [18] Z. G. Zhan, J. S. Xiao, Y. S. Zhang, M. Pan, R. Z. Yuan, Gas diffusion through differently structured gas diffusion layers of PEM fuel cells, Int. J. Hydrog. Energy, 32 (2007) 4443 - 4451. [19] J. Sim, M. Kang, H. Oh, E. Lee, J. Y. Jyoung, K. Min, The effect of gas diffusion layer on electrochemical effective reaction area of catalyst layer and water discharge capability, Renew. Energy, 197 (2022) 932 - 942. [20]Ce-Tech, http://www.ce-tech.com.tw/cht/products.php?func=p_list&pc_parent=2. [21] 傅顯揚,聚脲系鍛燒型鈷氮碳化合物作陰離子交換膜燃料電池陰極觸媒之研究,化學工程與材料工程系,國立高雄科技大學,高雄市, 2022, pp. 130. [22] D. Lee, J. W. Lim, S. Nam, I. Choi, D. G. Lee, Method for exposing carbon fibers on composite bipolar plates, Compos. Struct., 134 (2015) 1 - 9. [23] N. F. Asri, T. Husaini, A. Sulong, E. H. Majlan, W. R. W. Daud, Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review, Int. J. Hydrog. Energy, 42 (2017) 9135 - 9148. [24] V. Petkov, Y. Maswadeh, Y. G. Zhao, A. L. Lu, H. Cronk, F. F. Chang, S. Y. Shan, H. Kareem, J. Luo, C. J. Zhong, S. Shastri, P. Kenesei, Nanoalloy catalysts inside fuel cells: An atomic-level perspective on the functionality by combined in operando x-ray spectroscopy and total scattering, Nano Energy, 49 (2018) 209 - 220. [25] L. Xie, X.-P. Zhang, B. Zhao, P. Li, J. Qi, X. Guo, B. Wang, H. Lei, W. Zhang, U.-P. Apfel, R. Cao, Enzyme-Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions, Angewandte Chemie International Edition, 60 (2021) 7576 - 7581. [26] H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst, Science, 357 (2017) 479 - 483. [27] Q. X. Lai, J. Zheng, Z. M. Tang, D. Bi, J. X. Zhao, Y. Y. Liang, Optimal Configuration of N-Doped Carbon Defects in 2D Turbostratic Carbon Nanomesh for Advanced Oxygen Reduction Electrocatalysis, Angew. Chem.-Int. Edit., 59 (2020) 11999 - 12006. [28] D. H. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Science, 351 (2016) 361 - 365. [29] H. B. Yang, J. W. Miao, S. F. Hung, J. Z. Chen, H. B. Tao, X. Z. Wang, L. P. Zhang, R. Chen, J. J. Gao, H. M. Chen, L. M. Dai, B. Liu, Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst, Sci. Adv., 2 (2016) 11. [30] N. Zhou, N. Wang, Z. X. Wu, L. G. Li, Probing Active Sites on Metal-Free, Nitrogen-Doped Carbons for Oxygen Electroreduction: A Review, Catalysts, 8 (2018) 16. [31] P. Yaengthip, A. Siyasukh, L. Payattikul, T. Kiatsiriroat, K. Punyawudho, The ORR activity of nitrogen doped-reduced graphene oxide below decomposition temperature cooperated with cobalt prepared by strong electrostatic adsorption technique, J. Electroanal. Chem., 915 (2022) 9. [32] M. Salzinger, M. B. Fichtl, J. A. Lercher, On the influence of pore geometry and acidity on the activity of parent and modified zeolites in the synthesis of methylenedianiline, Appl. Catal. A-Gen., 393 (2011) 189 - 194. [33] G. Information, Methylene Diphenyl Di-Isocyanate (MDI) Market - Growth, Trends, Covid-19 Impact, and Forecasts (2023 - 2028). [34] T. Reshetenko, M. Odgaard, D. Schlueter, A. Serov, Analysis of alkaline exchange membrane fuel cells performance at different operating conditions using DC and AC methods, J. Power Sources, 375 (2018) 185 - 190. [35] X. L. Li, D. J. Chen, Synthesis and characterization of aromatic/aliphatic co-polyureas, J. Appl. Polym. Sci., 109 (2008) 897 - 902. [36] A. S. Giroto, S. F. do Valle, T. Ribeiro, C. Ribeiro, L. H. C. Mattoso, Towards urea and glycerol utilization as "building blocks" for polyurethane production: A detailed study about reactivity and structure for environmentally friendly polymer, React. Funct. Polym., 153 (2020) 11. [37] H. W. Wang, H. Qiao, J. Guo, J. Sun, H. F. Li, S. Zhang, X. Y. Gu, Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU), Compos. Pt. B-Eng., 182 (2020) 11. [38] F. Fug, K. Rohe, J. Vargas, C. Nies, M. Springborg, W. Possart, 4,4 '-methylene diphenyl diisocyanate - Conformational space, normal vibrations and infrared spectra, Polymer, 99 (2016) 671 - 683. [39] P. X. Wang, X. Y. Ma, Q. H. Li, B. Q. Yang, J. P. Shang, Y. Q. Deng, Green synthesis of polyureas from CO2 and diamines with a functional ionic liquid as the catalyst, RSC Adv., 6 (2016) 54013 - 54019. [40] C. Nies, F. Fug, C. Otto, W. Possart, Adhesion of polyurethanes on native metal surfaces - stability and the role of urea-like species, Int. J. Adhes. Adhes., 52 (2014) 19 - 25. [41] S. Majeed, J. M. Zhao, L. Zhang, S. Anjum, Z. Y. Liu, G. B. Xu, Synthesis and electrochemical applications of nitrogen-doped carbon nanomaterials, Nanotechnol. Rev., 2 (2013) 615 - 635. [42] D. Y. Zhong, S. Liu, G. Y. Zhang, E. G. Wang, Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission, J. Appl. Phys., 89 (2001) 5939 - 5943. [43] B. Tang, S.K. Wang, R. Li, X. L. Gou, J. L. Long, Urea treated metal organic frameworks-graphene oxide composites derived N-doped Co-based materials as efficient catalyst for enhanced oxygen reduction, J. Power Sources, 425 (2019) 76 - 86. [44] Q. Wang, Z. H. Zhang, S. J. Shi, F. Wu, Z. G. Zhang, G. N. Li, Y. G. Suo, Highly active cobalt- and nitrogen-doped carbon derived from ZIF-67@melamine towards oxygen reduction reaction, J. Electroanal. Chem., 894 (2021) 9. [45] M. Naderi, Chapter Fourteen - Surface Area: Brunauer–Emmett–Teller (BET), in: S. Tarleton (Ed.) Progress in Filtration and Separation, Academic Press, Oxford, 2015, pp. 585 - 608. [46] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure and Applied Chemistry, 87 (2015) 1051 - 1069. [47] J. F. Wu, X. Z. Yuan, H. J. Wang, M. Blanco, J. J. Martin, J. J. Zhang, Diagnostic tools in PEM fuel cell research: Part I - Electrochemical techniques, Int. J. Hydrog. Energy, 33 (2008) 1735 - 1746. [48] 電化學原理與方法, 五南2002. [49] T. Shinagawa, A. T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Sci Rep, 5 (2015) 21. [50] H. L. Jia, J. Zhao, L. Gu, Z. J. Peng, Z. L. Bao, X. L. Sun, M. Y. Guan, Highly active Co-N-doped graphene as an efficient bifunctional electrocatalyst (ORR/HER) for flexible all-solid-state zinc-air batteries, Sustain. Energ. Fuels, 4 (2020) 6165 - 6173.
|