Ashby, R. D., Solaiman, D. K., Nuñez, A., Strahan, G. D., & Johnston, D. B. (2018). Burkholderia sacchari DSM 17165: A source of compositionally-tunable block-copolymeric short-chain poly (hydroxyalkanoates) from xylose and levulinic acid. Bioresource technology, 253, 333-342.
Avérous, L., & Kalia, S. (2016). Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. John Wiley & Sons.
Ball, T. K., Saurugger, P. N., & Benedik, M. J. (1987). The extracellular nuclease gene of Serratia marcescens and its secretion from Escherichia coli. Gene, 57(2-3), 183-192.
Behera, S., Priyadarshanee, M., & Das, S. (2022). Properties, biochemical synthesis, and their applications. Chemosphere, 133723.
Benedik, M. J., & Strych, U. (1998). Serratia marcescens and its extracellular nuclease. FEMS microbiology letters, 165(1), 1-13.
Berger, E., Ramsay, B. A., Ramsay, J. A., Chavarie, C., & Braunegg, G. (1989). PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnology techniques, 3(4), 227-232.
Beuchat, L. R. (1978). Injury and repair of gram-negative bacteria, with special consideration of the involvement of the cytoplasmic membrane. Advances in applied microbiology, 23, 219-243.
Bjerga, G. E. K., Arsın, H., Larsen, Ø., Puntervoll, P., & Kleivdal, H. T. (2016). A rapid solubility-optimized screening procedure for recombinant subtilisins in E. coli. Journal of biotechnology, 222, 38-46.
Boynton, Z. L., Koon, J. J., Brennan, E. M., Clouart, J. D., Horowitz, D. M., Gerngross, T. U., & Huisman, G. W. (1999). Reduction of cell lysate viscosity during processing of poly (3-hydroxyalkanoates) by chromosomal integration of the staphylococcal nuclease gene in Pseudomonas putida. Applied and environmental microbiology, 65(4), 1524-1529.
Bozell, J. J., Moens, L., Elliott, D. C., Wang, Y., Neuenscwander, G. G., Fitzpatrick, S. W., ... & Jarnefeld, J. L. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resources, conservation and recycling, 28(3-4), 227-239.
Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. A. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging.
Cole, M. (2013). Microplastic Swallowing Zooplankton Environ. Sci. Technol., 47, 6646-6655.
Conversio Market and Strategy GmbH. Global plastics flow 2018. Available at: https://www.bkvgmbh.de/fileadmin/documents/Studien/Global_Plastics_Flow_Summary_Oct29_2019.pdf.
Cunningham, F. E., Proctor, V. A., & Goetsch, S. J. (1991). Egg-white lysozyme as a food preservative: an overview. World's Poultry Science Journal, 47(2), 141-163.
Cunningham, L. (1956). B. W. Catlin & M. P. de Garilhe: A deoxyribonuclease of Micrococcus pyogenes. J. Amer. chem. Soc, 78, 4642-4645.
Donovan, R. S., Robinson, C. W., & Glick, B. R. (1996). Optimizing inducer and culture conditions for expression of foreign proteins under the control of thelac promoter. Journal of industrial microbiology, 16(3), 145-154.
Fidler, S., & Dennis, D. (1992). Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS microbiology reviews, 9(2-4), 231-235.
Fischetti, V. A. (2008). Bacteriophage lysins as effective antibacterials. Current opinion in microbiology, 11(5), 393-400.
Fleming, A. (1922). On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character, 93(653), 306-317.
Gamero, J. E. R., Favaro, L., Pizzocchero, V., Lomolino, G., Basaglia, M., & Casella, S. (2018). Nuclease expression in efficient polyhydroxyalkanoates-producing bacteria could yield cost reduction during downstream processing. Bioresource technology, 261, 176-181.
Holmes, P. A. (1985). Applications of PHB-a microbially produced biodegradable thermoplastic. Physics in technology, 16(1), 32.
Jensen, H. B., & Kleppe, K. (1972). Studies on T4 lysozyme: affinity for chitin and the use of chitin in the purification of the enzyme. European Journal of Biochemistry, 26(3), 305-312.
Katsui, N., Tsuchido, T., Takano, M., & Shibasaki, I. (1981). Effect of preincubation temperature on the heat resistance of Escherichia coli having different fatty acid compositions. Microbiology, 122(2), 357-361.
Kiedrowski, M. R., Crosby, H. A., Hernandez, F. J., Malone, C. L., McNamara, J. O., & Horswill, A. R. (2014). Staphylococcus aureus Nuc2 is a functional, surface-attached extracellular nuclease. PloS one, 9(4), e95574.
Koller, M., Sandholzer, D., Salerno, A., Braunegg, G., & Narodoslawsky, M. (2013). Biopolymer from industrial residues: Life cycle assessment of poly (hydroxyalkanoates) from whey. Resources, conservation and recycling, 73, 64-71.
Kolybaba, M., Tabil, L. G., Panigrahi, S., Crerar, W. J., Powell, T., & Wang, B. (2006). Biodegradable polymers: past, present, and future. In ASABE/CSBE North Central Intersectional Meeting (p. 1). American Society of Agricultural and Biological Engineers.
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop II, R. M., & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175-176.
Kumar, A., Shende, D. Z., & Wasewar, K. L. (2022). Sustainable process development for the recovery of biobased levulinic acid through reactive extraction. Journal of Chemical Technology & Biotechnology.
Lachica, R. V. F., Genigeorgis, C., & Hoeprich, P. D. (1971). Metachromatic agar-diffusion methods for detecting staphylococcal nuclease activity. Applied microbiology, 21(4), 585-587.
Lemoigne, M., & Roukhelman, N. (1940). Fermentation β-hydroxybutyrique. Caractérisation et évolution des produits de deshydration et de polymérisation de l'acide β-hydroxybutyrique. Ann. Ferment, 5, 527-536.
Mannina, G., Presti, D., Montiel-Jarillo, G., & Suárez-Ojeda, M. E. (2019). Bioplastic recovery from wastewater: A new protocol for polyhydroxyalkanoates (PHA) extraction from mixed microbial cultures. Bioresource technology, 282, 361-369.
Marchessault, R. H., Monasterios, C. J., & Lepoutre, P. (1990). Properties of poly-β-hydroxyalkanoate latex: nascent morphology, film formation and surface chemistry. In Novel biodegradable microbial polymers (pp. 97-112). Springer, Dordrecht.
Marr, A. G., & Ingraham, J. L. (1962). Effect of temperature on the composition of fatty acids in Escherichia coli. Journal of bacteriology, 84(6), 1260-1267.
Menacho‐Melgar, R., Moreb, E. A., Efromson, J. P., Yang, T., Hennigan, J. N., Wang, R., & Lynch, M. D. (2020). Improved two‐stage protein expression and purification via autoinduction of both autolysis and auto DNA/RNA hydrolysis conferred by phage lysozyme and DNA/RNA endonuclease. Biotechnology and Bioengineering, 117(9), 2852-2860.
Mozejko-Ciesielska, J., Szacherska, K., & Marciniak, P. (2019). Pseudomonas species as producers of eco-friendly polyhydroxyalkanoates. Journal of Polymers and the Environment, 27(6), 1151-1166.
Novackova, I., Kucera, D., Porizka, J., Pernicova, I., Sedlacek, P., Koller, M., ... & Obruca, S. (2019). Adaptation of Cupriavidus necator to levulinic acid for enhanced production of P (3HB-co-3HV) copolyesters. Biochemical Engineering Journal, 151, 107350.
Peregrina, A., Martins-Lourenço, J., Freitas, F., Reis, M. A., & Arraiano, C. M. (2021). Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis. Life, 11(8), 853.
Pérez-Rivero, C., López-Gómez, J. P., & Roy, I. (2019). A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developments. Biochemical Engineering Journal, 150, 107283.
Prager, E. M., & Jolles, P. (1996). Lysozymes: Model enzymes in biochemistry and biology. Animal lysozymes c and g: An overview, 9-31.
Pulingam, T., Appaturi, J. N., Parumasivam, T., Ahmad, A., & Sudesh, K. (2022). Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers, 14(11), 2141.
Ramsay, J. A., Berger, E., Voyer, R., Chavarie, C., & Ramsay, B. A. (1994). Extraction of poly-3-hydroxybutyrate using chlorinated solvents. Biotechnology Techniques, 8(8), 589-594.
Rand, J. M., Pisithkul, T., Clark, R. L., Thiede, J. M., Mehrer, C. R., Agnew, D. E., ... & Pfleger, B. F. (2017). A metabolic pathway for catabolizing levulinic acid in bacteria. Nature microbiology, 2(12), 1624-1634.
Raval, N., Kalyane, D., Maheshwari, R., & Tekade, R. K. (2019). Copolymers and Block Copolymers in Drug Delivery and Therapy. In Basic Fundamentals of Drug Delivery (pp. 173-201). Academic Press.
Ray, S., & Kalia, V. C. (2017). Biomedical applications of polyhydroxyalkanoates. Indian journal of microbiology, 57(3), 261-269.
Rhazi, N., Charlier, P., Dehareng, D., Engher, D., Vermeire, M., Frère, J. M., ... & Fonzé, E. (2003). Catalytic mechanism of the Streptomyces K15 DD-transpeptidase/penicillin-binding protein probed by site-directed mutagenesis and structural analysis. Biochemistry, 42(10), 2895-2906.
Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G., & Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145(1), 69-73.
Scientific, D. (2018). Danimer scientific film resins. Compostable Options for a Wide Range of Products.
Serrano-Ruiz, J. C., Luque, R., & Sepúlveda-Escribano, A. (2011). Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chemical Society Reviews, 40(11), 5266-5281.
Sheu, D. S., Chen, Y. L. L., Jhuang, W. J., Chen, H. Y., & Jane, W. N. (2018). Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. L7L from levulinate as sole carbon source. International journal of biological macromolecules, 118, 1558-1564.
Silver, L. L. (2016). A Gestalt approach to Gram-negative entry. Bioorganic & medicinal chemistry, 24(24), 6379-6389.
Silvetti, T., Morandi, S., Hintersteiner, M., & Brasca, M. (2017). Use of hen egg white lysozyme in the food industry. In Egg innovations and strategies for improvements (pp. 233-242). Academic Press.
Simon, R. U. P. A. P., Priefer, U., & Pühler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology, 1(9), 784-791.
Steinbüchel, A., & Füchtenbusch, B. (1998). Bacterial and other biological systems for polyester production. Trends in biotechnology, 16(10), 419-427.
Van Herreweghe, J. M., & Michiels, C. W. (2012). Invertebrate lysozymes: diversity and distribution, molecular mechanism and in vivo function. Journal of biosciences, 37(2), 327-348.
Wang, F., Ouyang, D., Zhou, Z., Page, S. J., Liu, D., & Zhao, X. (2021). Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. Journal of Energy Chemistry, 57, 247-280.
Weber, D. J., Mullen, G. P., & Mildvan, A. S. (1991). Conformation of an enzyme-bound substrate of staphylococcal nuclease as determined by NMR. Biochemistry, 30(30), 7425-7437.
Yan, K., Lafleur, T., Wu, X., Chai, J., Wu, G., & Xie, X. (2015). Cascade upgrading of γ-valerolactone to biofuels. Chemical Communications, 51(32), 6984-6987.
Yang, Y. H., Brigham, C., Willis, L., Rha, C., & Sinskey, A. (2011). Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnology letters, 33(5), 937-942.
Yu, J. (2007). Microbial production of bioplastics from renewable resources. In Bioprocessing for value-added products from renewable resources (pp. 585-610). Elsevier.
Yu, J., & Chen, L. X. (2006). Cost‐effective recovery and purification of polyhydroxyalkanoates by selective dissolution of cell mass. Biotechnology progress, 22(2), 547-553.
林育嘉。(2021)。大腸桿菌中溶菌酶基因的表現對PHA產率與純化效率的影響。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。林蕙君。(2022)。剔除PHA解聚酶基因對PHA產量、單體組成與物性的影響。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。陳紀融。(2019)。野生株Cupriavidus sp. L7L以分子育種提升其PHA產量之研究。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。
羅文章。(2022)。遺傳工程菌株Cupriavidus sp.TH的PHA生合成及其物性分析。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。