|
[1]B. Dudley, BP, Statistical Review of World Energy 11 June 2019 [2]E. Kabira, P. Kumarb, S. Kumarc, A. A. Adelodund, K. H. Kime, Solar energy: Potential and future prospects, Renewable and Sustainable Energy Reviews 82 (2018) 894–900 [3]M. Shahabuddin, M. A. Alim, T. Alam, M. Mofijur, S. F. Ahmed , G. Perkins, A critical review on the development and challenges of concentrated solar power technologies, Sustainable Energy Technologies and Assessments 47 (2021) 101-434 [4]A. Boubault, C. K. Ho, A. Hall, T. N. Lambert, A. Ambrosini, Durability of solar absorber coatings and their cost-effectiveness, Solar Energy Materials & Solar Cells 166 (2017) 176–184 [5]K. P. Sibin, S. John, H. C. Barshilia, Control of thermal emittance of stainless steelu sings puttered tungsten thin films for solar thermal power applications, Solar Energy Materials & Solar Cells 133 (2015) 1–7 [6]X. L. Qiua, X. H. Gaoa, G. Liua, Enhanced spectral selectivity of HfC based high temperature solar absorbers with the addition of Mo, Thin Solid Films 713 (2020) 138349 [7]N. Selvakumar, H. C. Barshilia, K.S.Rajam, A. Biswas, Structural, optical and electrical properties of argon implanted TiN thin films, Journal of Refractory Metals and Hard Materials, 48 (2015) 318-323 [8]N. Selvakumar, H. C. Barshilia,Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Solar Energy Materials & Solar Cells 98 (2012)1–23 [9]R. Blickensderfer, D. K. Deardorff, R. L. Lincoln, Spectral reflectance of TiNx and ZrNx films as selective solar absorbers, Solar Energy, 19 (1977) 429-432 [10]M. Kotilainen, M. Honkanen, K. Mizohata, P. Vuoristo, Influence of temperature-induced copper diffusion on degradation of selective chromium oxy-nitride solar absorber coatings, Solar Energy Materials & Solar Cells 145(2016) 323–332 [11]Y. H. Jooa, K. Nandia, R. Ramesha, Y. Jangb, J. S. Baeb, T. Cheona, S. H. Kima, Atomic layer deposited Mo2N thin films using Mo(CO)6 and NH3 plasma as a Cu diffusion barrier, Journal of Alloys and Compounds 858 (2021) 158-314 [12]K. Xu, M. Du, L. Hao, J. Mi, Q. Yu, S. Li, A review of high-temperature selective absorbing coatings for solar thermal applications, Journal of Materiomics 6 (2020) 167-182 [13]Q. C. Zhang, Y. Yin, D. R. Mills, High efficiency Mo-AI203 cermet selective surfaces for high-temperature application, Solar Energy Materials and Solar Cells 40 (1996) 43-53 [14]K. Zhang, L. Hao, M. Du, J. Mi, J. N. Wang, J. P. Meng, A review on thermal stability and high temperature induced ageing mechanisms of solar absorber coatings, Renewable and Sustainable Energy Reviews 67 (2017) 1282–1299 [15]J. Cheng , C. Wanga, W. Wanga, X. Dua, Y. Liu, Y. Xue, T. Wanga, B. Chen, Improvement of thermal stability in the solar selective Absorbing Mo–Al2O3 coating , Solar Energy Materials & Solar Cells 109 (2013) 204–208 [16]T. Eisenhammer, A. Haugeneder, A. Mahr, High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe, Solar Energy Materials & Solar Cells 54 (1998) 379-386 [17]D. Chester, P. Bermel, J. D. Joannopoulos, M. Soljacic, I. Celanovic, Design and global optimization of high-efficiency solar thermal systems with tungsten cermets, Solar energy [18]D. Xinkang, W. Cong, W. Tianmin, Z. Long, C Buliang, R. Ning, Microstructure and spectral selectivity of Mo–Al2O3 solar selective absorbing coatings after annealing, Thin Solid Films 516 (2008) 3971–3977 [19]N. Selvakumar, H. C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Solar Energy Materials & Solar Cells 98 (2012)1–23 [20]T. Eisenhammer, High-temperature optical properties and stability of selective absorbers based on quasicrystalline AlCuFe, Solar Energy Materials & Solar Cells 54 (1998) 379-386 [21]S. Zhao, E. Avendan, K. Gelin, J. Lu, E. Wackelgard, Optimization of an industrial DC magnetron sputtering process for graded composition solar thermal absorbing layer, Solar Energy Materials & Solar Cells 90 (2006) 308–328 [22]B. Usmani, V. Vijay, R. Chhibber, A. Dixit, Optimization of sputtered zirconiumthin films as an infrared reflector for use in spectrally-selective solar absorbers, Thin Solid Films 627 (2017) 17–25 [23]M. E. Rinco, J. D. Molinaa, M. Sancheza, C. Arancibiaa, E. Garcıab, Optical characterization of tandem absorber/reflector systems based on titanium oxide–carbon coatings, Solar Energy Materials & Solar Cells 91 (2007) 1421–1425 [24]J. A. Duffle, W. A. Beckman, BOOK REVIEW, Solar Energy 51 (1993) 521 [25]R. Bayon, G. S. Vicente, A. Morales, Durability tests and up-scaling of selective absorbers based on copper–manganese oxide deposited by dip-coating, Solar Energy Materials & Solar Cells 94 (2010) 998–1004 [26]熊德華,陳煒,李宏,太陽能光熱轉換選擇性吸收塗層研究進展,科技報導,32 (2014) 50-58。 [27]M. G. Tsegay, H. G. Gebretinsae, J. Sackey, C. J. Arendse, Z. Y. Nuru, Structural and optical properties of Pt-Al2O3 double cermet as selective solar absorber, Materials Today: Proceedings 36 (2021) 571–575 [28]J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley&Sons Fourth Edition (2013) 173-191. [29]W. Wang, X. Huan, Y. Li, Spectral response and structural analyses of reactively sputtered molybdenum oxides for selective solar absorption, Ceramics International 47 (2021) 18893–18897 [30]M. Koltun, G. Gukhman, A. Gavrilina, Stable selective coating black nickel for solar collector surfaces, Solar Energy Mater.and Solar Cells 33 (1994) 41-44. [31]J. Z. Lu, B. H. Chen, L. H. Jin, Z. Fang, G. Liu, X. H. Gao, Thermal stability investigation of the SS/MO/Al2O3 spectrally selective solar absorber coatings, Surface Engineering 1743-2944. [32]S. Izquierdo, C. Montanes, C. Dopazo, N. Fueyo, Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage, Energy Policy 38 (2010) 6215–6221 [33]Bo Chen, D. Yang, P. A. Charpentier, S. Nikumb, Optical and structural properties of pulsed laser deposited Ti:Al2O3 thin films, Solar Energy Materials & Solar Cells 92 (2008) 1025– 1029 [34]M. Kussmaul, Ion beam treatment of potential space materials at the NASA Lewis Research Center, Swface and Coatings Technology. 51(1992) 299-306 [35]M. Koltun, G. Gukhman, A. Gavrilina, Stable selective coating "black nickel" for solar collector surfaces, Solar Energy Materials and Solar Cells 33 (1994) 41-44 [36]L. E. Koutsokeras, G.M. Matenoglou, P. Patsalas, Structure, electronic properties and electron energy loss spectra of transition metal nitride films, Thin Solid Films 528 (2013) 49–52 [37]H. Guan1, W. Yi, T. Li, Y. Li, J. Li, H. Bai, G. Xi, Low temperature synthesis of plasmonic molybdenum nitride nanosheets for surface enhanced Raman scattering, Nature Communications 11 (2020) 3889 [38]J. Doctor, P. Thakkar, M. Prajapati, N. P. Priti, J. Mehta, Non-destructive raman spectroscopic method for estimation of montelukast from tablet dosages form, International Journal of Pharmacy and Pharmaceutical Sciences ISSN 0975-1491 [39]J. Qiana, S. Lia, J. Pub, Z. Caib, H. Wangb, Q. Caia, P. Juc, Effect of heat treatment on structure and properties of molybdenum nitride and molybdenum carbonitride films prepared by magnetron sputtering, Surface & Coatings Technology 374 (2019) 725–735 [40]F. Zhang, L. He, H. Pan, S. Lian, M. Wang, J. Yin, X. Chen, J. Ren, M. Chen, Revealing the catalytic micro-mechanism of MoN, WN and WC on hydrogen evolution reaction, International journal of hydrogen energy 46 (2021) 23615-23628 [41]J. Konrath, U. Schmid, M. Schneider, Nitrogen incorporation in sputter deposited molybdenum nitride thin films, Journal of Vacuum Science & Technology A Vacuum Surfaces and Films 171 (2016) 10.1116/1.4941141 [42]N. Haberkorna,b, S. Bengioa, H. Troiania, S. Suáreza, P. D. Péreza, M. Sirenaa, J. Guimpela, Synthesis of nanocrystalline δ-MoN by thermal annealing of amorphous thin films grown on (100) Si by reactive sputtering at room temperature, Thin Solid Films 660 (2018) 242–246 [43]X. Xu, F. Su, Z. Li, Microstructure and tribological behaviors of MoN-Cu nanocomposite coatings sliding against Si3N4 ball under dry and oil-lubricated conditions, Volumes 15 (2019) 434-435 [44]J. Yamamoto, Y. Furukawa, Raman study of the interaction between regioregular poly(3-hexylthiophene) (P3HT) and transition-metal oxides MoO3,V2O5, and WO3in polymer solar cells, Chemical Physics Letters 644 (2016) 267–270 [45]C. Zhang, M.C.Gao, Y.Yang, F.Zhang, Thermodynamic modelingand first-principles calculations of the Mo–O system, Computer Coupling of Phase Diagrams & Thermo chemistry 45 (2014) 178–187 [46]J. Scarminio, A. Loureno, A. Gorenstein, Electrochromism and photochromism in amorphous molybdenum oxide films, Thin Solid Films 302 (1997) 66-70 [47]M. Prochazka, J. Vlcek , J. Houska , S. Haviar, R. Cerstvý, K. Veltrusk, Multifunctional MoOx and MoOxNy films with 2.5 < x < 3.0 and y < 0.2 prepared using controlled reactive deep oscillation magnetron sputtering, Thin Solid Films 717 (2021) 138-442 [48]J. R. Taylor, A. T. Dinsdale, M. Hillen, M Sclleby, A Critical Assessment of Tnermodynamic and Phase Diagram Data for the Al-O System, Calphad 16 (1992) 173-179 [49]Z. Y. Nuru, C. J. Arendse, T. F. Muller, S. Khamlich, M. Maaza, Thermal stability of electron beam evaporated AlxOy/Pt/AlxOy multilayer solar absorber coatings, Solar Energy Materials & Solar Cells 120 (2014) 473–480 [50]Z. Y. Nurua, M. Msimangae, C. J. Arendseb, M. Maazaa, Heavy ion elastic recoil detection analysis of AlxOy/Pt/AlxOy multilayer Applied Surface Science 298 (2014) 176–181 [51]J. Jyoth, H. Chaliyawala, G. Srinivas, H. S. Nagaraja, H. C. Barshilia, Design and fabrication of spectrally selective TiAlC/TiAlCN/TiAlSiCN/TiAlSiCO/TiAlSiO tandem absorber for high-temperature solar thermal power applications, Solar Energy Materials & Solar Cells 140 (2015) 209–216 [52]M. Dun, X. Liu, L. Hao, X. Wang, J. Mi, L. Jiang, Q. Yu, Micro structure and thermal stability of Al/Ti0.5Al0.5N/Ti0.25Al0.75N/AlN solar selective coating, Solar Energy Materials & Solar Cells 111(2013) 49–56 [53]B. Sovdat, M. Kadunc, M. Batič, G. Milčinski, Natural color representation of Sentinel-2 data, Remote Sensing of Environment 225 (2019) 392–402 [54]F. Yakuphanoglua, M. Arslanb, Determination of thermo-optic coefficient, refractive index, optical dispersion and group velocity parameters of an organic thin film, Physica B 393 (2007) 304–309 [55]T. Mizoguchi, T. Imajo, J. Chen, T. Sekiguchi, T. Suemasu, K. Toko, Composition dependent properties of p- and n-type polycrystalline group-IV alloy thin films, 8388 (2021) 02715-8 [56]M. D. Khan, M. A. Malik, N. Revaprasadu, Progress in selenium based metal-organic precursors for main group and transition metal selenide thin films and nanomaterials, Coordination Chemistry Reviews 388 (2019) 24–47 [57]B. E. Sernelius, C. G. Granqvist, K. Berggren, Band-gap tailoring of Zno by means of heavy Al doping, 15 JUNE 1988-I [58]L. Sansone, S. Campopiano, M. Pannico, M. Giordano, P. Musto, A. Iadicicco, Photonic bandgap influence on the SERS effect in metal-dielectric colloidal crystals optical fiber probe, Sensors & Actuators: B. Chemical 345 (2021) 130-149 [59]L. Liang, L. Shi, F. Wang, L. Yao, Y. Zhang, W. Qi, Synthesis and photo-catalytic activity of porousg-C3N4: Promotion effect of nitrogen vacancy in H2evolution and pollutant degradation reactions, International journal o f hydrogen energy44 (2019) 16315-16326 [60]K. M. Calamba, J. Salamania, M. P. J. Jõesaar, L. J. S. Johnson, R. Boyd, J. F. Pierson, M. A. Sortica, D. Primetzhofer, M. Odén, Effect of nitrogen vacancies on the growth, dislocation structure, and decomposition of single crystal epitaxial (Ti 1-x Alx)N y thin films, Acta Materialia 203 (2021) 116-509 [61]X. Y. Xi, X. H. Sun, Photonic bandgap properties of two dimensional photonic quasicrystals with multiple complex structures, Superlattices & Microstructures 129 (2019) 247–251 [62]X. Zhou, M. Yan, M. Dong, D. Ma, X. Yu, J. Zhang, Phase Stability and Compressibility of 3R-MoN2 at high pressure, Scientific Reports (2019)9:10524 [63]T. Wang, Y. Jin, L. Bai, G. Zhang, Structure and properties of NbN/MoN nano-multilayer coatings deposited by magnetron sputtering, Journal of Alloys and Compounds 729 (2017)942-948 [64]W. Tillmann, D. Kokalj, D. Stangier, Influence of the deposition parameters on the texture and mechanical properties of magnetron sputtered cubic MoNx thin films, Materialia 5 (2019) 100-186 [65]H. C. Barshilia, N. Selvakumar, K. S. Rajam, Structure and optical properties of pulsed sputter deposited CrxOy/Cr/Cr2O3 solar selective coatings, Journal of applied (2008) 103 [66]D. V. Bellas, E. Lidorikis, Design of high-temperature solar-selective coatings for application in solar collectors, Solar Energy Materials & Solar Cells 170 (2017) 102–113 [67]W. Wang, X. Huan, C. Wang, Self-organization of Mo nanoparticles embedded in MoOx matrix for efficient solar energy absorption, Solar Energy 208 (2020) 665–673 [68]Q. Han, R. Wang, H. Zhu, M. Wan, Y. Mai, The preparation and investigation of all thin film electrochromic devices based on reactively sputtered MoO3 thin films, Materials Science in Semiconductor Processing 126 (2021) 105686 [69]C. Ma, C. Zhao, X. Fan, Z. Liu, J. Liu, Preparation of non-stoichiometric Al2O3 film with broadband antireflective by magnetron sputtering, Chemical Physics Letters 764 (2021) 138-299
|