[1]S. B. Williams, O. Pizarro, D. M. Steinberg, A. Friedman, and M. Bryson, “Reflections on a decade of autonomous underwater vehicles operations for marine survey at the Australian Centre for Field Robotics,” Annu Rev Control, vol. 42, pp. 158–165, 2016, doi: 10.1016/j.arcontrol.2016.09.010.
[2]J. Heo, J. Kim, and Y. Kwon, “Technology Development of Unmanned Underwater Vehicles (UUVs),” Journal of Computer and Communications, vol. 05, no. 07, pp. 28–35, 2017, doi: 10.4236/jcc.2017.57003.
[3]P. C. Chu, “Mine impact burial prediction from one to three dimensions,” Applied Mechanics Reviews, vol. 62, no. 1. pp. 1–25, Jan. 2009. doi: 10.1115/1.3013823.
[4]K. Sub Song and P. C. Chu, “Conceptual design of future undersea unmanned vehicle (UUV) system for mine disposal,” IEEE Syst J, vol. 8, no. 1, pp. 43–51, Mar. 2014, doi: 10.1109/JSYST.2012.2210592.
[5]J. J. Rios and S. Ashby, “NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS NAVAL MINES IN THE 21 ST CENTURY: CAN NATO NAVIES MEET THE CHALLENGE?,” 2005.
[6]M. E. Sanders, “Amphibious Operations in a Mine Environment. A Clear Path to the Beach....Unmarked,” 2000.
[7]S. Sariel, T. Balch, and N. Erdogan, “Naval mine countermeasure missions,” IEEE Robotics and Automation Magazine, vol. 15, no. 1. Institute of Electrical and Electronics Engineers Inc., pp. 45–52, 2008. doi: 10.1109/M-RA.2007.914920.
[8]E. Bovio, D. Cecchi, and F. Baralli, “Autonomous underwater vehicles for scientific and naval operations,” Annu Rev Control, vol. 30, no. 2, pp. 117–130, 2006, doi: 10.1016/j.arcontrol.2006.08.003.
[9]S. R. Cho, T. Muttaqie, Q. T. Do, S. Kim, S. M. Kim, and D. H. Han, “Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure,” International Journal of Naval Architecture and Ocean Engineering, vol. 10, no. 6, pp. 711–729, Nov. 2018, doi: 10.1016/j.ijnaoe.2017.12.002.
[10]T. Ghanbari Ghazijahani, H. Jiao, and D. Holloway, “Experiments on dented cylindrical shells under peripheral pressure,” Thin-Walled Structures, vol. 84, pp. 50–58, 2014, doi: 10.1016/j.tws.2014.05.012.
[11]C. S. Smith, “Design of Submersible Pressure Hulls in Composite Materials,” 1991.
[12]朱继懋, “潜水器设计,” E 海: E 海交通大学出版社, 1992.
[13]C. T. F. Ross, “A conceptual design of an underwater vehicle,” Ocean Engineering, vol. 33, no. 16, pp. 2087–2104, Nov. 2006, doi: 10.1016/j.oceaneng.2005.11.005.
[14]S. Aghajari, K. Abedi, and H. Showkati, “Buckling and post-buckling behavior of thin-walled cylindrical steel shells with varying thickness subjected to uniform external pressure,” Thin-Walled Structures, vol. 44, no. 8, pp. 904–909, Aug. 2006, doi: 10.1016/j.tws.2006.08.015.
[15]S. R. Cho and P. A. Frieze, “Strength formulation for ring-stiffened cylinders under combined axial loading and radial pressure,” J Constr Steel Res, vol. 9, no. 1, pp. 3–34, Jan. 1988, doi: 10.1016/0143-974X(88)90054-5.
[16]V. Carvelli, N. Panzeri, and C. Poggi, “Buckling strength of GFRP under-water vehicles.” [Online]. Available: www.elsevier.com/locate/compositesb
[17]S. S. Seleim and J. Roorda, “Buckling Behaviour of Ring-Stiffened Cylinders; Experimental Study,” 1986.
[18]徐慶瑜(C.Y. Hsu), 梁卓中(C.C. Liang), 鄧作樑(T.L. Teng), 陳俊良(C.L. Chen), and 阮海英(H.A. Nguyen), “環向內肋及外肋加勁圓筒型壓力殼承受水下爆震負荷之動態反應研究,” in 中華民國振動與噪音工程學會論文集, 中華民國振動與噪音工程學會, 2015, pp. 308–315. [Online]. Available: https://www.AiritiLibrary.com/Publication/Index/a0000192-201506-201509220005-201509220005-308-315
[19]T. Hyakudome, “Design of Autonomous Underwater Vehicle,” 2011. [Online]. Available: www.intechopen.com
[20]J. F. Sánchez-Pérez, C. Mascaraque-Ramírez, J. A. Moreno Nicolás, E. Castro, and M. Cánovas, “Study of the application of PCM to thermal insulation of UUV hulls using Network Simulation Method,” Alexandria Engineering Journal, vol. 60, no. 5, pp. 4627–4637, Oct. 2021, doi: 10.1016/j.aej.2021.03.058.
[21]K. Hom, “Printed in Great Britain COMPOSITE MATERIALS FOR PRESSURE HULL STRUCTURES,” Pergamon Press, 1969.
[22]C. C. Liang, H. W. Chen, and C. Y. Jen, “Optimum design of filament-wound multilayer-sandwich submersible pressure hulls,” Ocean Engineering, vol. 30, no. 15, pp. 1941–1967, 2003, doi: 10.1016/S0029-8018(03)00044-1.
[23]R. Wei, G. Pan, J. Jiang, K. Shen, and D. Lyu, “An efficient approach for stacking sequence optimization of symmetrical laminated composite cylindrical shells based on a genetic algorithm,” Thin-Walled Structures, vol. 142, pp. 160–170, Sep. 2019, doi: 10.1016/j.tws.2019.05.010.
[24]A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, “Review of advanced composite structures for naval ships and submarines.” [Online]. Available: www.elsevier.com/locate/compstruct
[25]D. Graham, “Buckling of thick-section composite pressure hulls,” 1996.
[26]T. Reynolds and M. Krenzke, “DESIGN AND ANALYSIS OF SMALL SUBMERSIBLE PRESSURE HULLS?,” Ibgamon Press, 1973.
[27]E. Fathallah, H. Qi, L. Tong, and M. Helal, “Design optimization of composite elliptical deep-submersible pressure hull for minimizing the buoyancy factor,” Advances in Mechanical Engineering, vol. 2014, 2014, doi: 10.1155/2014/987903.
[28]R. V. Southwell and A. E. H. Love, “V. On the general theory of elastic stability,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol. 213, no. 497–508, pp. 187–244, Jan. 1997, doi: 10.1098/rsta.1914.0005.
[29]C. J. Moon, I. H. Kim, B. H. Choi, J. H. Kweon, and J. H. Choi, “Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications,” Compos Struct, vol. 92, no. 9, pp. 2241–2251, Aug. 2010, doi: 10.1016/j.compstruct.2009.08.005.
[30]D. Graham, “Predicting the collapse of externally pressurised ring-stiffened cylinders using finite element analysis,” Marine Structures, vol. 20, no. 4, pp. 202–217, Oct. 2007, doi: 10.1016/j.marstruc.2007.09.002.
[31]J. R. MacKay and F. Van Keulen, “Partial safety factor approach to the design of submarine pressure hulls using nonlinear finite element analysis,” Finite Elements in Analysis and Design, vol. 65, pp. 1–16, 2013, doi: 10.1016/j.finel.2012.10.009.
[32]S. G. P. Castro, R. Zimmermann, M. A. Arbelo, R. Khakimova, M. W. Hilburger, and R. Degenhardt, “Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells,” Thin-Walled Structures, vol. 74, pp. 118–132, 2014, doi: 10.1016/j.tws.2013.08.011.
[33]G. M. Luo and Y. C. Hsu, “Nonlinear buckling strength of out-of-roundness pressure hull,” Thin-Walled Structures, vol. 130, pp. 424–434, Sep. 2018, doi: 10.1016/j.tws.2018.06.009.
[34]D. R. Speth, Y. P. Yang, and G. W. Ritter, “Qualification of adhesives for marine composite-to-steel applications,” Int J Adhes Adhes, vol. 30, no. 2, pp. 55–62, Mar. 2010, doi: 10.1016/j.ijadhadh.2009.08.004.
[35]A. Pramanik et al., “Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys – A review,” Composites Part A: Applied Science and Manufacturing, vol. 101. Elsevier Ltd, pp. 1–29, Oct. 01, 2017. doi: 10.1016/j.compositesa.2017.06.007.
[36]林依慧, “FRP船舶T型接合承受非接觸性水下爆炸之接頭設計,” 國立高雄海洋科技大學造船及海洋工程研究所碩士畢業論文, 2017.[37]E. Fathallah, H. Qi, L. Tong, and M. Helal, “Numerical investigation of the dynamic response of optimized composite elliptical submersible pressure hull subjected to non-contact underwater explosion,” Compos Struct, vol. 121, pp. 121–133, Mar. 2015, doi: 10.1016/j.compstruct.2014.11.016.
[38]R. H. Cole and R. Weller, “Underwater explosions,” Phys Today, vol. 1, no. 6, p. 35, 1948.
[39]C. C. Liang and Y. S. Tai, “Shock responses of a surface ship subjected to noncontact underwater explosions,” Ocean Engineering, vol. 33, no. 5–6, pp. 748–772, Apr. 2006, doi: 10.1016/j.oceaneng.2005.03.011.
[40]Z. Zong, Y. Zhao, and H. Li, “A numerical study of whole ship structural damage resulting from close-in underwater explosion shock,” Marine Structures, vol. 31, pp. 24–43, Apr. 2013, doi: 10.1016/j.marstruc.2013.01.004.
[41]S. W. Gong and B. C. Khoo, “Transient response of stiffened composite submersible hull to underwater explosion bubble,” Compos Struct, vol. 122, pp. 229–238, Apr. 2015, doi: 10.1016/j.compstruct.2014.10.026.
[42]A. M. Zhang, X. L. Yao, and J. Li, “The interaction of an underwater explosion bubble and an elastic-plastic structure,” Applied Ocean Research, vol. 30, no. 3. pp. 159–171, Jul. 2008. doi: 10.1016/j.apor.2008.11.003.
[43]L. He, Z. Li, Y. Xie, Y. Liu, and M. Liu, “Buckling failure mechanism and critical buckling load prediction method of super-long piles in soft-clay ground in deep water,” Ocean Engineering, vol. 276, p. 114216, 2023, doi: https://doi.org/10.1016/j.oceaneng.2023.114216.
[44]E. J. Barbero, Finite Element Analysis of Composite Materials using Abaqus®. CRC press, 2023.
[45]S. W. Tsai and E. M. Wu, “A general theory of strength for anisotropic materials,” J Compos Mater, vol. 5, no. 1, pp. 58–80, 1971.
[46]K.-S. Liu and S. W. Tsai, “A progressive quadratic failure criterion for a laminate*,” 2004.
[47]K.-S. Liu and S. W. Tsai, “A PROGRESSIVE QUADRATIC FAILURE CRITERION FOR A LAMINATE*.”
[48]Z. Hashin, “Failure Criteria for Unidirectional Fiber Composites,” J Appl Mech, vol. 47, no. 2, pp. 329–334, Jun. 1980, doi: 10.1115/1.3153664.
[49]I. Lapczyk and J. A. Hurtado, “Progressive damage modeling in fiber-reinforced materials,” Compos Part A Appl Sci Manuf, vol. 38, no. 11, pp. 2333–2341, Nov. 2007, doi: 10.1016/j.compositesa.2007.01.017.
[50]A. P. C. Duarte, A. Díaz Sáez, and N. Silvestre, “Comparative study between XFEM and Hashin damage criterion applied to failure of composites,” Thin-Walled Structures, vol. 115, pp. 277–288, Jun. 2017, doi: 10.1016/j.tws.2017.02.020.
[51]Y. Gao, J. Gao, X. Song, H. Ding, and H. Wang, “A collaborative grading optimization method of rib-reinforced ultra-thick composite pressure hull,” Ocean Engineering, vol. 274, p. 114038, 2023, doi: https://doi.org/10.1016/j.oceaneng.2023.114038.
[52]R. F. Hamade and A. H. Ammouri, “Compose-it: A computer-based tool for the design and optimization of composite laminates,” in ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2010, pp. 207–212. doi: 10.1115/IMECE2010-38761.
[53]羅光閔 and 賴建璋, “BV公開程應用於FRP上層結構設計,” 中國造船暨輪機工程學刊, vol. 36, no. 1, pp. 19–31, 2017, [Online]. Available: https://www.AiritiLibrary.com/Publication/Index/10234535-201702-201708230007-201708230007-19-31
[54]“SP Composites Guide”, Accessed: May 26, 2023. [Online]. Available: https://reurl.cc/DA9lGE
[55]V. L. Jantara Junior, I. S. Ramirez, F. P. Garcia Marquez, and M. Papaelias, “Numerical evaluation of type I pressure vessels for ultra-deep ocean trench exploration,” Results in Engineering, vol. 11, Sep. 2021, doi: 10.1016/j.rineng.2021.100267.
[56]“Standard Test Method for Tensile Properties of Plastics 1”, doi: 10.1520/D0638-22.
[57]“Designation: D3165 − 07 Standard Test Method for Strength Properties of Adhesives in Shear by Tension Loading of Single-Lap-Joint Laminated Assemblies 1”, doi: 10.1520/D3165-07R23.
[58]“Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal) 1”, doi: 10.1520/D1002-10R19.
[59]江品萱, “自主型水下載具模組化規劃與流體動力之模 擬測試 Planning of Modular Platform for Autonomous Underwater Vehicle and Hydrodynamic Simulation Tests,” 國立成功大學系統及船舶機電工程學系碩士論文, 2009.[60]蕭宏哲, “FRP複合材料應用於微型水下載具之強度探討,” 國立高雄科技大學造船及海洋工程系暨研究所碩士畢業論文, 2022.[61]N. Friedman, Submarine design and development. Conway Maritime Press, 1984.
[62]馬友友, “失圓壓力殼非線性挫曲強度之研究 Study on Nonlinear Buckling Strength of Out-of-Roundness Pressure Hull,” 國立高雄科技大學(楠梓/旗津校區) 造船及海洋工程系暨研究所碩士論文, 2018.[63]C. C. Liang and Y. S. Tai, “Shock responses of a surface ship subjected to noncontact underwater explosions,” Ocean Engineering, vol. 33, no. 5–6, pp. 748–772, Apr. 2006, doi: 10.1016/j.oceaneng.2005.03.011.
[64]“台灣周圍海域地形圖,” 科技部海洋學門資料庫提供. https://www.odb.ntu.edu.tw/bathy/colorimages/ (accessed May 31, 2023).
[65]黃郁超, “潛艦外殼對壓力殼爆震防護能力之研究,” 2020.
[66]H. , K. B. , & S. P. Hibbitt, Abaqus analysis user’s manual version 6.10. Providence, RI, USA, 2011.
[67]H. Wang, X. Zhu, Y. S. Cheng, and J. Liu, “Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse,” Marine Structures, vol. 39, pp. 90–117, 2014, doi: https://doi.org/10.1016/j.marstruc.2014.07.003.