邱義堂. "通信資料庫之資料探勘:客戶流失預測之研究.", (2001), 國立中山大學 資訊管理學系研究所.
李莉, 謝超, 吳迪. "基於 DeepFM 和 XGBoost 融合模型的靜脈血栓預測. ", (2022), 電腦系統應用, 31(9):376–381.
連惟謙. "應用資料分析技術進行顧客流失與顧客價值之研究." (2004), 中原大學, 資訊管理研究所.
蔡子豪. "深度學習於消費資料上的顧客流失預測." (2018), 國立交通大學, 網路 工程研究所.
蔡宛靜. "應用資料探勘技術於顧客流失預測之研究-以電信通訊產業為例" (2013), 國防大學理工學院, 資訊工程碩士班.P. K. Dalvi, S.K. Khandge, A. Deomore, A. Bankar and V.A. Kanade. "Analysis of customer churn prediction in telecom industry using decision trees and logistic regression.", (2016), Symposium on Colossal Data Analysis and Networking (CDAN) p.1-4.
Manďák, Jan, and Jana Hančlová. "Use of Logistic Regression for Understanding and Prediction of Customer Churn in Telecommunications.", (2019), Statistika: Statistics & Economy Journal.
Nikita Bagul, Priya Surana, Prerana Berad, Chirag Khachane. "Retail Customer Churn Analysis using RFM Model and K-Means Clustering.", (2021), International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 10 Issue 03.
Wael Fujo, Samah, Subramanian, Suresh and Ahmad Khder, Moaiad. "Customer Churn Prediction in Telecommunication Industry Using Deep Learning.", (2022), Information Sciences Letters: Vol. 11.
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, Xiuqiang He, "DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.", (2017) Information Retrieval (cs.IR), arXiv:1703.04247 [cs.IR]
Florian Pfisterer, Janek Thomas, Bernd Bischl, Florian, et al. "Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features.", Computational Statistics 37, 2671-2692.
Chen, Tianqi, and Carlos Guestrin. "Xgboost: A scalable tree boosting system.", (2016), KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Pages 785 - 794.
Georgy Shevlyakov; Kliton Andrea; Lakshminarayan Choudur; Pavel Smirnov; Alexander Ulanov; Natalia Vassilieva. "Robust versions of the Tukey boxplot with their application to detection of outliers,", (2013), IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 2013, pp. 6506-6510.