[1]Advantages of direct RF sampling architectures, https://www.ni.com/zh-tw/innovations/white-papers/18/advantages-of-direct-rf-sampling-architectures.html, Accessed on: Jan. 16, 2020.
[2]D. K. Cheng, Field and wave electromagnetics. Addison-Wesley Publishing Company, 1989.
[3]Heinrich hertz's wireless experiment, http://people.seas.harvard.edu/~jones/cscie129/nu_lectures/lecture6/hertz/Hertz_exp.html, Accessed on: Jan. 16, 2020.
[4]Electromagnetic spectrum, https://en.wikipedia.org/wiki/Electromagnetic_spectrum, Accessed on: Jan. 16, 2020.
[5]楊騰毅,使用均勻阻抗共振器設計超寬頻及多頻帶通濾波器,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2016。[6]iFixit, iPhone 11 pro max teardown, https://www.ifixit.com/Teardown/iPhone+11+Pro+Max+Teardown/126000, Accessed on: Jan. 16, 2020.
[7]Ultra-wideband, https://en.wikipedia.org/wiki/Ultra-wideband, Accessed on: Feb. 3, 2020.
[8]劉伊婷,超寬頻環型帶通濾波器及雙工器之研究,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2008。[9]洪嘉和,多頻帶、多重混附波抑制與超寬頻帶通濾波器之研究,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2010。[10]鄭富中,使用步階阻抗樁負載共振器設計多頻與寬頻濾波器,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2011。[11]鍾秉邑,使用非對稱式均勻阻抗負載樁共振器設計多頻帶通濾波器,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2013。[12]陳啓榮,使用均勻阻抗共振器設計單頻寬止帶以及多頻帶通濾波器,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2015。[13]劉佳鴻,適用於藍芽及WiMax規格之寬止帶帶通濾波器,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2015。[14]林芳妤,使用均勻阻抗共振器設計用於通訊系統之多工器,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2015。[15]T. Y. Yang, Y. C. Tsai, and S. K. Liu, "Design of tri-band bandpass filter using parallel coupled structures," 2016 5th International Symposium on Next-Generation Electronics (ISNE), Hsinchu, Taiwan, pp. 1-2, May. 4-6, 2016.
[16]蔡易成,使用均勻阻抗負載樁共振器設計多頻寬止帶帶通濾波器與雙工器,碩士論文,國立高雄科技大學光電與通訊研究所,高雄,2017。[17]Black box, https://en.wikipedia.org/wiki/Black_box, Accessed on: Feb. 5, 2020.
[18]K. K. Parhi, VLSI digital signal processing systems: Design and implementation. Wiley India Pvt. Limited, 2007.
[19]Types of active filters, butterworth, chebyshev, bessel and elliptic filters., https://www.circuitstoday.com/active-filter-types, Accessed on: Feb. 6, 2020.
[20]Classic filters, https://basedados.aeroubi.pt/pluginfile.php/610/mod_resource/content/0/ClassicFilters_BTTWRTH_BSSL_CHBCHV_LPTC.pdf, Accessed on: Jul. 22, 2020.
[21]Analog filter wizard, https://www.analog.com/designtools/en/filterwizard/, Accessed on: Feb. 10, 2020.
[22]Characteristics impedance of symmetrical networks, constant k, low pass, high pass, band pass, http://www.brainkart.com/article/Characteristics-impedance-of-symmetrical-networks,-Constant-K,-Low-pass,-High-pass,-Band-pass_12505/, Accessed on: Jul. 21, 2020.
[23]Q factor, https://en.wikipedia.org/wiki/Q_factor, Accessed on: Feb. 10, 2020.
[24]Planar transmission line, https://en.wikipedia.org/wiki/Planar_transmission_line#Quasi-TEM_modes, Accessed on: Feb. 10, 2020.
[25]AppCAD version 4.0.0, http://www.hp.woodshot.com/, Accessed on: Jun. 1, 2020.
[26]J. S. Hong, Microstrip filters for RF / microwave applications. Wiley, 2011.
[27]D. M. Pozar, Microwave engineering. John Wiley & Sons, 2005.
[28]E. O. Hammerstad, "Equations for microstrip circuit design," 1975 5th European Microwave Conference, Hamburg, Germany, pp. 268-272, Sep. 1-4, 1975.
[29]M. Kobayashi, "A dispersion formula satisfying recent requirements in microstrip CAD," IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 8, pp. 1246-1250, Aug. 1988.
[30]I. P. Singh, P. Bhatt, and A. S. Yadav, "Merits of parallel coupled bandpass filter over end coupled bandpass filter in x band," International Journal of Electrical, Electronics and Data Communication, Dubai, UAE, May. 1, 2015.
[31]R. E. Collin, Foundations for microwave engineering. McGraw-Hill, 1966.
[32]C. P. Wen, "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087-1090, Dec. 1969.
[33]R. S. Beeresha, A. M. Khan, and M. R. HV, "Global journal of trends in engineering simulation study on insertion and return loss of planar transmission lines for different dielectric substrates," Global Journals of Trends in Engineering, vol. 2, p. 8, Apr. 2015.
[34]Ferroelectric phase shifters, https://www.microwaves101.com/encyclopedias/ferroelectric-phase-shifters, Accessed on: Mar. 1, 2020.
[35]Coplanar waveguide, https://en.wikipedia.org/wiki/Coplanar_waveguide, Accessed on: Mar. 1, 2020.
[36]Coplanar waveguides (CPW), http://qucs.sourceforge.net/tech/node86.html, Accessed on: Mar. 1, 2020.
[37]M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, "Terahertz attenuation and dispersion characteristics of coplanar transmission lines," IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 6, pp. 910-916, Jun. 1991.
[38]Coplanar waveguide open, http://qucs.sourceforge.net/tech/node87.html, Accessed on: Mar. 3, 2020.
[39]K. Beilenhoff, W. Heinrich, and H. L. Hartnagel, "Finite-difference analysis of open and short circuits in coplanar MMICs including finite metallization thickness and mode conversion," 1992 IEEE MTT-S Microwave Symposium Digest, Albuquerque, NM, USA, pp. 103-106, Jun. 1-5, 1992.
[40]K. Beilenhoff, H. Klingbeil, W. Heinrich, and H. L. Hartnagel, "Open and short circuits in coplanar MMIC's," IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 9, pp. 1534-1537, Sep. 1993.
[41]S. Gevorgian, T. Martinsson, P. Linner, and E. Kollberg, "Simple analytical approximations for a gap in coplanar waveguide," 2000 30th European Microwave Conference, Paris, France, pp. 1-4, Oct. 2-5, 2000.
[42]C. Sinclair and S. J. Nightingale, "An equivalent circuit model for the coplanar waveguide step discontinuity," 1992 IEEE MTT-S Microwave Symposium Digest, Albuquerque, NM, USA, pp. 1461-1464, Jun. 1-5, 1992.
[43]R. N. Simons, Coplanar waveguide circuits, components, and systems. John Wiley & Sons, 2004.
[44]K. Hettak, N. Dib, A. Sheta, and S. Toutain, "A class of novel uniplanar series resonators and their implementation in original applications," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 9, pp. 1270-1276, Sep. 1998.
[45]Distributed-element filter, https://en.wikipedia.org/wiki/Distributed-element_filter, Accessed on: Mar. 5, 2020.
[46]H. Wang, L. Zhu, and W. Menzel, "Ultra-wideband bandpass filter with hybrid microstrip/CPW structure," IEEE Microwave and Wireless Components Letters, vol. 15, no. 12, pp. 844-846, Dec. 2005.
[47]Z. Lei and W. Menzel, "Broad-band microstrip-to-CPW transition via frequency-dependent electromagnetic coupling," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 5, pp. 1517-1522, May. 2004.
[48]H. Z. Lai and S. K. Liu, "Ultra-wideband bandpass filter using open-loop stepped impedance resonator and coplanar waveguide structure," 2019 17th Conference on Microelectronics Technology and Applications, Kaohsiung, Taiwan, May. 24, 2019.
[49]T. Moyra, S. K. Parui, and S. Das, "CB-CPW based wide band bandpass filter using open-stub resonator," Journal of The Institution of Engineers (India): Series B, vol. 94, no. 1, pp. 13-19, Mar. 2013.
[50]D. A. Frickey, "Conversions between s, z, y, h, ABCD, and t parameters which are valid for complex source and load impedances," IEEE Transactions on Microwave Theory and Techniques, vol. 42, no. 2, pp. 205-211, Feb. 1994.
[51]K. Li, D. Kurita, and T. Matsui, "An ultrawideband bandpass filter using broadside-coupled microstrip-coplanar waveguide structure," IEEE MTT-S International Microwave Symposium Digest, 2005., Long Beach, CA, USA, pp. 675-678, Jun. 17, 2005.
[52]C. Liu and J. Xu, "Ultra-wideband bandpass filter with dual notched bands using hybrid microstrip/CPW structure," 2011 3rd International Conference on Computer Research and Development, Shanghai, China, vol. 3, pp. 282-284, Mar. 11-13, 2011.
[53]A. N. Ghazali and A. Singh, "Broadside coupled UWB filter with dual notched band and extended upper stopband," 2014 International Conference on Devices, Circuits and Communications (ICDCCom), Ranchi, India, pp. 1-5, Sep. 12-13, 2014.
[54]X. Luo, J. Ma, K. Ma, and K. S. Yeo, "Compact UWB bandpass filter with ultra narrow notched band," IEEE Microwave and Wireless Components Letters, vol. 20, no. 3, pp. 145-147, Jan. 2010.