|
[1] X. Liu, J. Yi, K. Wu, Y. Jiang, Y. Liu, B. Zhao, W. Li, J. Zhang, Rechargeable Zn-MnO2 batteries: advances, challenges and perspectives, Nanotechnology, 31 (2020) 122001. [2] D. Chen, M. Lu, D. Cai, H. Yang, W. Han, Recent advances in energy storage mechanism of aqueous zinc-ion batteries, Journal of Energy Chemistry, 54 (2021) 712-726. [3] S.K. Das, S. Mahapatra, H. Lahan, Aluminium-ion batteries: developments and challenges, J. Mater. Chem. A, 5 (2017) 6347-6367. [4] Y.-K. Sze, D.E. Irish, Vibrational spectral studies of ion-ion and ion-solvent interactions. I. Zinc nitrate in water, Journal of Solution Chemistry, 7 (1978) 395-415. [5] Z. Liu, S.Z. El Abedin, F. Endres, Dissolution of zinc oxide in a protic ionic liquid with the 1-methylimidazolium cation and electrodeposition of zinc from ZnO/ionic liquid and ZnO/ionic liquid–water mixtures, Electrochemistry Communications, 58 (2015) 46-50. [6] Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen, P.M. Ajayan, Strategies for dendrite‐free anode in aqueous rechargeable zinc ion batteries, Advanced Energy Materials, 10 (2020) 2001599. [7] B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries, Energy & Environmental Science, 12 (2019) 3288-3304. [8] F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J.A. Dura, K. Xu, C. Wang, Highly reversible zinc metal anode for aqueous batteries, Nature materials, 17 (2018) 543-549. [9] C. Zhang, W. Shin, L. Zhu, C. Chen, J.C. Neuefeind, Y. Xu, S.I. Allec, C. Liu, Z. Wei, A. Daniyar, The electrolyte comprising more robust water and superhalides transforms Zn‐metal anode reversibly and dendrite‐free, Carbon Energy, 3 (2021) 339-348. [10] T. Yamaguchi, S. Hayashi, H. Ohtaki, X-ray diffraction and Raman studies of zinc (II) chloride hydrate melts, ZnCl2. rH2O (r= 1.8, 2.5, 3.0, 4.0, and 6.2), The Journal of Physical Chemistry, 93 (1989) 2620-2625. [11] H. Kanno, J. Hiraishi, Raman spectroscopic study of glassy aqueous zinc halide solutions, Journal of Raman Spectroscopy, 9 (1980) 85-89. [12] R.J. Wilcox, B.P. Losey, J.C. Folmer, J.D. Martin, M. Zeller, R. Sommer, Crystalline and liquid structure of zinc chloride trihydrate: a unique ionic liquid, Inorganic Chemistry, 54 (2015) 1109-1119. [13] C.Y. Chen, K. Matsumoto, K. Kubota, R. Hagiwara, Q. Xu, A room‐temperature molten hydrate electrolyte for rechargeable zinc–air batteries, Advanced Energy Materials, 9 (2019) 1900196. [14] N. Dubouis, P. Lemaire, B. Mirvaux, E. Salager, M. Deschamps, A. Grimaud, The role of the hydrogen evolution reaction in the solid–electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes, Energy & Environmental Science, 11 (2018) 3491-3499. [15] Y. Zou, T. Liu, Q. Du, Y. Li, H. Yi, X. Zhou, Z. Li, L. Gao, L. Zhang, X. Liang, A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion, Nature communications, 12 (2021) 1-11. [16] C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D.P. Leonard, I.A. Rodríguez-Pérez, J.-X. Jiang, C. Fang, A ZnCl 2 water-in-salt electrolyte for a reversible Zn metal anode, Chemical Communications, 54 (2018) 14097-14099. [17] D. Irish, B. McCarroll, T. Young, Raman study of zinc chloride solutions, The Journal of Chemical Physics, 39 (1963) 3436-3444. [18] J. Evans, G.-S. Lo, Raman and infrared studies of acetonitrile complexed with zinc chloride, Spectrochimica Acta, 21 (1965) 1033-1038. [19] Y.-K. Sze, D.E. Irish, Vibrational spectral studies of ion-ion and ion-solvent interactions. III. Zinc nitrate in water/acetonitrile mixtures, Journal of Solution Chemistry, 8 (1979) 395-409. [20] S.C. Mohr, W.D. Wilk, G.M. Barrow, The Association of Water with Bases and Anions in an Inert Solvent1, Journal of the American Chemical Society, 87 (1965) 3048-3052. [21] H. Edwards, A. Hoskins, A. Johnson, I. Lewis, Raman spectroscopic determination of the dissociation constants of an acetonitrile–zinc complex in aqueous solution and the enthalpy and entropy of complex dissociation, Journal of Raman spectroscopy, 22 (1991) 651-656. [22] W. Yang, X. Du, J. Zhao, Z. Chen, J. Li, J. Xie, Y. Zhang, Z. Cui, Q. Kong, Z. Zhao, Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries, Joule, 4 (2020) 1557-1574. [23] Y.-H. Chen, H.-W. Yeh, N.-C. Lo, C.-W. Chiu, I.-W. Sun, P.-Y. Chen, Electrodeposition of compact zinc from the hydrophobic Brønsted acidic ionic liquid-based electrolytes and the study of zinc stability along with the acidity manipulation, Electrochimica Acta, 227 (2017) 185-193. [24] M. Suleman, Y. Kumar, S. Hashmi, Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions, Materials Chemistry and Physics, 163 (2015) 161-171. [25] B.G. Min, T.W. Son, W.H. Jo, S.G. Choi, Thermal stability of polyacrylonitrile in the melt formed by hydration, Journal of applied polymer science, 46 (1992) 1793-1798. [26] M. Patel, A. Agarwal, H. Bist, Single crystal Raman spectra of magnesium and zinc perchlorate hexahydrates, Journal of Raman spectroscopy, 14 (1983) 406-409. [27] A. Zuur, A. Reintjes, W. Groeneveld, Complexes with ligands containing nitrile groups.: part VIII. Organic nitriles as ligand, Recueil Des Travaux Chimiques Des Pays‐Bas, 89 (1970) 385-391. [28] Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Hydrate-melt electrolytes for high-energy-density aqueous batteries, Nature Energy, 1 (2016) 1-9. [29] Q. Zheng, S. Miura, K. Miyazaki, S. Ko, E. Watanabe, M. Okoshi, C.P. Chou, Y. Nishimura, H. Nakai, T. Kamiya, Sodium‐and Potassium‐Hydrate Melts Containing Asymmetric Imide Anions for High‐Voltage Aqueous Batteries, Angewandte Chemie, 131 (2019) 14340-14345. [30] G. Láng, G. Inzelt, A. Vrabecz, G. Horányi, Electrochemical aspects of some specific features connected with the behavior of iron group metals in aqueous perchloric acid/perchlorate media, Journal of Electroanalytical Chemistry, 582 (2005) 249-257. [31] J. Xie, Z. Wang, P. Gu, Y. Zhao, Z.J. Xu, Q. Zhang, A novel quinone-based polymer electrode for high performance lithium-ion batteries, Science China Materials, 59 (2016) 6-11. [32] J. Xie, Z. Wang, Z.J. Xu, Q. Zhang, Toward a high‐performance all‐plastic full battery with a'single organic polymer as both cathode and anode, Advanced Energy Materials, 8 (2018) 1703509. [33] L. Zhang, L. Chen, X. Zhou, Z. Liu, Towards high‐voltage aqueous metal‐ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system, Advanced Energy Materials, 5 (2015) 1400930. [34] G. Fang, J. Zhou, A. Pan, S. Liang, Recent advances in aqueous zinc-ion batteries, ACS Energy Letters, 3 (2018) 2480-2501. [35] L. Chen, Q. An, L. Mai, Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zinc‐Ion Batteries, Advanced Materials Interfaces, 6 (2019). [36] C. Li, X. Zhang, W. He, G. Xu, R. Sun, Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications, J. Power Sources, 449 (2020). [37] N. Liu, B. Li, Z. He, L. Dai, H. Wang, L. Wang, Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries, Journal of Energy Chemistry, 59 (2021) 134-159. [38] G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3, Nano Energy, 25 (2016) 211-217. [39] G.S. James, Lange’s handbook of chemistry, CD & W Inc, Wyoming, (2005). [40] Y. Wang, J. Yi, Y. Xia, Recent progress in aqueous lithium‐ion batteries, Advanced Energy Materials, 2 (2012) 830-840. [41] A.R. Mainar, E. Iruin, J.A. Blázquez, New insights of Zn2+/Li+ hybrid aqueous batteries, Energy Technology, 8 (2020) 2000476. [42] C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Materials Today, 19 (2016) 109-123. [43] S. Dong, W. Shin, H. Jiang, X. Wu, Z. Li, J. Holoubek, W.F. Stickle, B. Key, C. Liu, J. Lu, Ultra-fast NH4+ storage: strong H bonding between NH4+ and bi-layered V2O5, Chem, 5 (2019) 1537-1551. [44] A.R. Mainar, E. Iruin, L.C. Colmenares, A. Kvasha, I. De Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, J.A. Blazquez, An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc, Journal of Energy Storage, 15 (2018) 304-328. [45] H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions, Nature Energy, 1 (2016) 1-7. [46] T. Yamamoto, T. Shoji, Rechargeable Zn| ZnSO4| MnO2-type cells, Inorganica chimica acta, 117 (1986) L27-L28. [47] J. Ming, J. Guo, C. Xia, W. Wang, H.N. Alshareef, Zinc-ion batteries: materials, mechanisms, and applications, Materials Science and Engineering: R: Reports, 135 (2019) 58-84. [48] L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang, C. Zhi, Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long‐life zinc rechargeable aqueous batteries, Advanced Energy Materials, 8 (2018) 1801090. [49] F. Wan, Z. Niu, Design strategies for vanadium‐based aqueous zinc‐ion batteries, Angewandte Chemie, 131 (2019) 16508-16517. [50] J.C. Peacock, B.L.D. Peacock, Some observations the dissolving of zinc chloride and several suggested solvents, Journal of the American Pharmaceutical Association, 7 (1918) 689-697. [51] D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui, L. Zhang, Y. Long, H. Li, Y. Tao, Z. Weng, A corrosion‐resistant and dendrite‐free zinc metal anode in aqueous systems, Small, 16 (2020) 2001736. [52] G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding, Y. Huang, Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2 (PO4) 3, Nano Energy, 25 (2016) 211-217. [53] C. Ouyang, S. Shi, M. Lei, Jahn–Teller distortion and electronic structure of LiMn2O4, Journal of Alloys and Compounds, 474 (2009) 370-374. [54] P.R. Ilango, K. Prasanna, S.J. Do, Y.N. Jo, C.W. Lee, Eco-friendly nitrogen-containing carbon encapsulated LiMn2O4 cathodes to enhance the electrochemical properties in rechargeable Li-ion batteries, Scientific reports, 6 (2016) 1-9. [55] C. Tomon, S. Sarawutanukul, N. Phattharasupakun, S. Duangdangchote, P. Chomkhuntod, N. Joraleechanchai, P. Bunyanidhi, M. Sawangphruk, Core-shell structure of LiMn2O4 cathode material reduces phase transition and Mn dissolution in Li-ion batteries, Communications Chemistry, 5 (2022) 1-12.
|