|
[1] H.O. Pierson, Handbook of refractory carbides & nitrides: properties, characteristics, processing and applications, William Andrew, 1996. [2] C.J. Brinker, G.W. Scherer, CHAPTER 4 - Particulate Sols and Gels, in: C.J. Brinker, G.W. Scherer (Eds.) Sol-Gel Science, Academic Press, San Diego, 1990, pp. 234-301. [3] C.J. Brinker, G.W. Scherer, CHAPTER 13 - Film Formation, in: C.J. Brinker, G.W. Scherer (Eds.) Sol-Gel Science, Academic Press, San Diego, 1990, pp. 786-837. [4] F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, Springer International Publishing Switzerland, 2016. [5] A.A. Fridman, Plasma Chemistry, Cambridge, UK: Cambridge University Press. , 2008. [6] E. Merzbacher, Quantum Mechanics 3rd, Diu, Bernard & Laloë, Franck, 1998. [7] S.K. Pankaj, C. Bueno-Ferrer, N.N. Misra, L. O'Neill, B.K. Tiwari, P. Bourke, P.J. Cullen, Dielectric barrier discharge atmospheric air plasma treatment of high amylose corn starch films, LWT - Food Science and Technology, 63 (2015) 1076-1082. [8] K. Fricke, I. Koban, H. Jablonowski, L. Jablonowski, K. Schröder, A. Kramer, K.-D. Weltmann, T. von Woedtke, T. Kocher, Atmospheric Pressure Plasma: A High-Performance Tool for the Efficient Removal of Biofilms, PloS one, 7 (2012) e42539. [9] S.A. Ahmedou Saleck, O. Rouaud, M. Havet, Assessment of the Electrohydrodynamic Drying Process, Food Bioprocess Technol., 2 (2008) 240-247. [10] H.Y. Chen, W.H. Yang, Chromium nitride thin films prepared using atmospheric pressure plasma process, Thin Solid Films, 706 (2020) 6. [11] J. Mo, M. Zhu, B. Lei, Y. Leng, N.J.W. Huang, Comparison of tribological behaviours of AlCrN and TiAlN coatings—Deposited by physical vapor deposition, 263 (2007) 1423-1429. [12] H. Willmann, P.H. Mayrhofer, L. Hultman, C.J.J.o.M.R. Mitterer, Hardness evolution of Al–Cr–N coatings under thermal load, 23 (2008) 2880-2885. [13] K. Bobzin, N. Bagcivan, P. Immich, S. Theiss, Arc Ion Plating Process Monitoring by Optical Emission Spectroscopy Exemplified for Chromium Containing Coatings, Plasma Process. Polym., 6 (2009) S357-S361. [14] J.L. Mo, M.H. Zhu, A. Leyland, A. Matthews, Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings, Surf. Coat. Technol., 215 (2013) 170-177. [15] W.L. Chen, J. Zheng, Y. Lin, S. Kwon, S.H. Zhang, Comparison of AlCrN and AlCrTiSiN coatings deposited on the surface of plasma nitrocarburized high carbon steels, Appl. Surf. Sci., 332 (2015) 525-532. [16] W.L. Chen, J. Zheng, X.N. Meng, S. Kwon, S.H. Zhang, Investigation on microstructures and mechanical properties of AlCrN coatings deposited on the surface of plasma nitrocarburized cool-work tool steels, Vacuum, 121 (2015) 194-201. [17] J.F. Tang, C.Y. Lin, F.C. Yang, Y.J. Tsai, C.L. Chang, Effects of nitrogen-argon flow ratio on the microstructural and mechanical properties of AlCrN coatings prepared using high power impulse magnetron sputtering, Surf. Coat. Technol., 386 (2020) 7. [18] D. Wang, S.S. Lin, Q. Shi, Y.N. Xue, H.Z. Yang, D.C. Zhang, Z.Z. Xu, C.Q. Guo, M.J. Dai, B.L. Jiang, K.S. Zhou, Microstructure effects on fracture failure mechanism of CrAl/CrAlN coating, Ceram. Int., 47 (2021) 3657-3664. [19] S. Kimura, S. Emura, K. Tokuda, Y.K. Zhou, S. Hasegawa, H. Asahi, Structural properties of AlCrN, GaCrN and InCrN, J. Cryst. Growth, 311 (2009) 2046-2048. [20] I. Maher, Q.M. Mehran, Adhesion Strength Prediction of CrAlN Coating on Al-Si Alloy (LM28): Fuzzy Modelling, Met. Mater.-Int., 12. [21] R. Cardoso, G. Arnoult, T. Belmonte, G. Hénrion, S.J.P.P. Weber, Polymers, Titanium Nitriding by Microwave Atmospheric Pressure Plasma: Towards Single Crystal Synthesis, 6 (2009). [22] R. Ichiki, H. Nagamatsu, Y. Yasumatsu, T. Iwao, S. Akamine, S. Kanazawa, Nitriding of steel surface by spraying pulsed-arc plasma jet under atmospheric pressure, Mater. Lett., 71 (2012) 134-136. [23] H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine, S. Kanazawa, Steel nitriding by atmospheric-pressure plasma jet using N2/H2 mixture gas, Surface and Coatings Technology, 225 (2013) 26-33. [24] L.L. Lin, S.A. Starostin, Q. Wang, V. Hessel, An atmospheric pressure microplasma process for continuous synthesis of titanium nitride nanoparticles, Chem. Eng. J., 321 (2017) 447-457. [25] L. Li, G.-h. Ni, Y.-j. Zhao, Q.-j. Guo, Q.-f. Lin, S.-y. Sui, H.-b. Xie, W.-x. Duan, Synthesis of nano-AlN powders from Al wire by arc plasma at atmospheric pressure, Ceram. Int., 44 (2018) 21810-21815. [26] A. Sugishima, H. Kajioka, Y. Makino, Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method, Surface and Coatings Technology, 97 (1997) 590-594. [27] G. Wei, A. Rar, J.A. Barnard, Composition, structure, and nanomechanical properties of DC-sputtered CrNx (0≤x≤1) thin films, Thin Solid Films, 398-399 (2001) 460-464. [28] T.C. Rojas, A. Caro, G. Lozano, J.C. Sanchez-Lopez, High-temperature solar-selective coatings based on Cr(Al)N. Part 1: Microstructure and optical properties of CrNy and Cr1-xAlxNy films prepared by DC/HiPIMS, Sol. Energy Mater. Sol. Cells, 223 (2021) 10. [29] A. Garzon-Fontecha, H.A. Castillo, E. Restrepo-Parra, W. De La Cruz, The role of the nitrogen flow rate on the transport properties of CrN thin films produced by DC magnetron sputtering, Surf. Coat. Technol., 334 (2018) 98-104. [30] M.A. Gharavi, G. Greczynski, F. Eriksson, J. Lu, B. Balke, D. Fournier, A. le Febvrier, C. Pallier, P. Eklund, Synthesis and characterization of single-phase epitaxial Cr2N thin films by reactive magnetron sputtering, Journal of Materials Science, 54 (2019) 1434-1442. [31] F. Barandehfard, J. Aluha, F. Gitzhofer, Synthesis of Cubic Aluminum Nitride (AlN) Coatings through Suspension Plasma Spray (SPS) Technology, Coatings, 11 (2021) 21.
|