|
[1]李開復、王詠剛, 人工智慧來了,天下文化, 2017年. [2]工業技術研究院。 2019年。 “工研院公布2019十大ICT產業關鍵議題:5G蓄勢待發生態先行”。 [Online].Available:https://www.itri.org.tw/chi/Content/NewsLetter/Contents.aspx?SiteID=1&MmmID=620605426331276153&MSid=1034303605075060011 [3]工業技術研究院。 2017年。 “IEK 公布2017十大ICT產業關鍵議題後物聯網時代,人工智慧接手:開啟Data, Computing, Experience的整合戰”。[Online].Available:https://www.itri.org.tw/chi/Content/NewsLetter/contents.aspx?&SiteID=1&MmmID=620605426331276153&SSize=10&SYear=2017&Keyword=%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7&MSID=743626741072654034 [4]Atkinson。 2017年。 “人工智慧在 2030 年創造的全球 GDP,將超過印度與中國 GDP 總和”。 [Online].Available: https://finance.technews.tw/2017/06/27/ai-over-india-china-gdp [5]F. Raihan, W. Ce, “PCB defect detection USING OPENCV with image subtraction method”, Int. Conf. on Information Management and Technology (ICIMTech), pp. 204-209, 2017. [6]TPCA台灣電路板協會。 2019年。“2018台灣PCB產業鏈總產值達9,583億新台幣 成長達5.6%”。[Online].Available: https://www.tpca.org.tw/Message/MessageView?id=3833&menutype=0&sitemenuid=15 [7]H.-H. Loh, M.-S. Lu, “Printed circuit board inspection using image analysis”, IEEE Trans. Ind. Appl., vol. 35, no. 2, pp. 426-432, Mar.Apr. 1999. [8]D. W. Raymond, D. F. Haigh, “Why automate optical inspection? ”, Proc. Int. Test Conf., pp. 1033-1033, 1997-Nov. [9]S. McIntyre, “7 Simple & Technology Driven PCB Quality Control Methods”, Syscom Tech USA, February 2017. [10]廖家宜。 2018年。“PCB產業智慧檢測需求發酵 AOI辨識藉AI優化成趨勢”。 [Online].Available: https://www.digitimes.com.tw/iot/article.asp?cat=158&id=0000537101_JXS0I0EP1T481N0JN4OPM [11]TechNews。 2018年。“AI 檢測助攻,欣興電子與 IBM 聯手推升品管綜效”。 [Online].Available: http://technews.tw/2018/09/27/ai-unimicron-ibm/ [12]Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Efficient processing of deep neural networks: A tutorial and survey, 2017. [13]黃國源, 類神經網路, 全華圖書股份有限公司, 2015年. [14]D. E. Rumelhart, G. E. Hinton, and R.J. Williams, “Learnimg internal representations by error propagation. ” In D.E. Rumelhart and J. L. McClelland,eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Cambridge, MA.:MIT Press, 1986, pp. 318-362. [15]D. E. Rumelhart, G. E. Hinton, and R.J. Williams, “Learnimg representations by back-propagating errors. ” Nature, vol. 323, no. 6088, pp. 533-536,1986. [16] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, "Handwritten Digit Recognition with a Back-Propagation Network", Proc. Advances in Neural Information Processing Systems, 1990. [17]A. Krizhevsky, I. Sutskever, and G. Hinton. “Imagenet classification with deep convolutional neural networks”. In NIPS, 2012. [18]How do Convolutional Neural Networks. [Online]. Available: https://brohrer.github.io/how_convolutional_neural_networks_work.html [19]Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning Applied to Document Recognition, ” Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. [20]Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. “Dropout: a simple way to prevent neural networks from overfitting”, J. Machine Learning Res. 15, 1929–1958 (2014). [21]W. Liu, Y. Wen, Z. Yu, M. Yang, “Large-margin softmax loss for convolutional neural networks”, Proc. 33rd Int. Conf. Mach. Learn., pp. 507-516, 2016. [22] K. He, X. Zhang, S. Ren, J. Sun, "Deep residual learning for image recognition", Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition, pp. 770-778, 2016. [23] K. He, X. Zhang, S. Ren, J. Sun, "Identity mappings in deep residual networks", Proc. ECCV, pp. 630-645, 2016. [24]Sik-Ho Tsang, 2018, Sep.“Review: ResNet — Winner of ILSVRC 2015 (Image Classification, Localization, Detection),” [Online].Available: https://towardsdatascience.com/review-resnet-winner-of-ilsvrc-2015-image-classification-localization-detection-e39402bfa5d8 [25]Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994. [26]X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010. [27]M. Courbariaux, Y. Bengio, J.-P. David, “BinaryConnect: Training deep neural networks with binary weights during propagations”, Proc. NIPS, pp. 3123-3131, 2015. [28]M. Courbariaux and Y. Bengio, “Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1,” arXiv preprint arXiv:1602.02830, Mar. 2016. [29]M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, “XNOR-Net: ImageNet classification using binary convolutional neural networks”, Proc. ECCV, pp. 525-542, 2016. [30]A. Krizhevsky, V. Nair, G. Hinton., 2014, The cifar-10 dataset. [Online].Available: https://www.cs.toronto.edu/~kriz/cifar.html [31] P.Y. Simard, D. Steinkraus, J.C. Platt, "Best practices for convolutional neural networks applied to visual document analysis", Proceedingsofthe Seventhlnternational Conference on Document Analysis and Recognition, vol. 2, pp. 958-062, 2003. [32]S. C. Wong, A. Gatt, V. Stamatescu, M. D. McDonnell, “Understanding data augmentation for classification: When to warp? ”, Proc. Int. Conf. Digit. Image Comput. Techn. Appl. (DICTA), pp. 1-6, 2016. [33]S. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. Knowl. & Data Eng., pages 1345-1359, 2009. 2 [34]陳明佐。 2019年。“Transfer Learning 轉移學習”。 [Online].Available: https://medium.com/%E6%88%91%E5%B0%B1%E5%95%8F%E4%B8%80%E5%8F%A5-%E6%80%8E%E9%BA%BC%E5%AF%AB/transfer-learning-%E8%BD%89%E7%A7%BB%E5%AD%B8%E7%BF%92-4538e6e2ffe4 [35]Keras Applications. [Online].Available: https://keras.io/applications/ [36]Raúl Gómez blog, 2018, May. “Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax Loss, Logistic Loss, Focal Loss and all those confusing names,” [Online].Available: https://gombru.github.io/2018/05/23/cross_entropy_loss/ [37]J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, “Imagenet: A large-scale hierarchical image database”, Proc. Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 248-255, 2009. [38]Peng Wei, Chang Liu, Mengyuan Liu, Yunlong Gao, Hong Liu, “CNN-based reference comparison method for classifying bare PCB defects”, The Journal of Engineering., vol.2018, no.16, pp. 1528-1533, Nov. 2018. [39]Linlin Zhang, Yongqing Jin, Xuesong Yang, Xia Li, Xiaodong Duan, Yuan Sun, Hong Liu, “Convolutional neural network-based multi-label classification of PCB defects”, The Journal of Engineering.,vol.2018, no.16,pp. 1612-1616,Nov. 2018. [40]C. T. Liao, W. H. Lee, S. H. Lai, “A flexible PCB inspection system based on statistical learning”, J. Signal Process. Syst., vol. 67, no. 3, pp. 279-290, 2012. [41]Du-Ming Tsai, Chih-Kai Huang, “Defect Detection in Electronic Surfaces Using Template-Based Fourier Image Reconstruction”, IEEE Trans. Compon. Packag. Manuf. Technol., vol.9, no.1, pp. 163-172, 2018. [42] LIBSVM: A Library for Support Vector Machines, C.-C. Chang and C.-J. Lin. (2001). [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm
|