|
[1] A. Blakers, “Development of the PERC solar cell,” IEEE Journal of Photovoltaics, Vol. 9, pp. 629-635, 2019. [2] S. Zhang, Y. Yao, D. Hu, W. Lian, H. Qian, J. Jie, Q. Wei, Z. Ni, X. Zhang, and L. Xie, “Application of silicon oxide on high efficiency monocrystalline silicon PERC solar cells,” Energies, Vol. 12, p.12061168, 2019. [3] Y. Hwang, C. Park, J. Kim, J. Kim, J. Y. Lim, H. Choi, J. Jo, and E. Lee, “Effect of laser damage etching on i-PERC solar cells,” Renewable Energy, Vol. 79, pp. 131-134, 2015. [4] C. Yu, S. Xu, J. Yao, and S. Han, “Recent advances in and new perspectives on crystalline silicon solar cells with carrier-selective passivation contacts,” Crystals, Vol. 8, pp. 1-18, 2015. [5] L. Fang, S. J. Baik, and K. S. Lim, “Transition metal oxide window layer in thin film amorphous silicon solar cells,” Thin Solid Films, Vol. 556, pp. 515-519, 2014 [6] L. G. Gerling, S. Mahato, A. M. Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, and J. Puigdollers, “Transition metal oxide window layer in thin film amorphous silicon solar cells,” Solar Energy Materials & Solar Cells, Vol. 145, pp. 109-115, 2016. [7] C. Battaglia, X. Yi, M. Zheng, I. D. Sharp, T. Chen, S. M. Donnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R. M. Wallace, and A. Javey, “Hole selective MoOx contact for silicon solar cells,” Nano Letters, Vol. 14, pp. 967-971, 2014. [8] J. M. Pachlhofer, C. Jachs, R. Franz, E. Franzke, H. Kostenbauer, J. Winkler, and C. Mitterera, “Structure evolution in reactively sputtered molybdenum oxide thin films,” Vacuum, Vol. 131, pp. 246-251, 2016. [9] J. Dreon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, and M. Boccard, “23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact,” Nano Energy, Vol. 70, p. 104495, 2020. [10] M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, J. Qiu, and Z. H. Lu, “A metallic molybdenum suboxide buffer layer for organic electronic devices,” Applied Physics Letters, Vol. 96, p. 213302, 2010. [11] J. Baltrusaitis, B. M. Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts, and N. Fairley, “Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model,” Applied Surface Science, Vol. 326, pp. 151-161, 2015. [12] S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, L. Yang, X. Chen, L. Lu, N. Min, M. Yin, and D. Li, “Interfacial behavior and stability analysis of p‐type crystalline silicon solar cells based on hole‐selective MoOx/metal contacts,” Solar Rapid Research Letters, Vol. 3, p. 1900274, 2019. [13] C. L. Cheng, C. C. Liu, Y. S. Chiu, P. W. Chen, and Z. Y. Liu, “Air ambient and composition effects of molybdenum oxides on photovoltaic and physical characteristics of screen-printed mono-crystalline silicon solar cells,” Materials Letters, Vol. 234, pp. 319-322, 2019. [14] M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3,” Advanced Functional Materials, Vol. 23, pp. 215-226, 2013. [15] B. B. Wang, X. X. Zhong, R. W. Shao, Y. A. Chen, U. Cvelbar, and K. Ostrikov, “From nanoparticles to nanofilms: exploring effects of Zn addition for nanostructure modification and photoluminescence intensification of MoO3−x nano materials,” Applied Physics, Vol. 53, p. 2095101, 2019. [16] J. K. Jha, W. Sun, R. S. Ortiz, J. Du, and N. D. Shepherd, “Electro-optical performance of molybdenum oxide modified aluminum doped zinc oxide anodes in organic light emitting diodes: a comparison to indium tin oxide,” Materials Express, Vol. 6, pp. 289-294, 2016. [17] C. Wu, J. Shen, J. Ma, S. Wang, Z. Zhang, and X. Yang, “Electrical and optical properties of molybdenum-doped ZnO transparent conductive thin films prepared by DC reactive magnetron sputtering,” Semiconductor Science and Technology, Vol. 24, p. 125012, 2009. [18] S. Yang, Y. Liu, T. Chen, W. Jin, T. Yanga, M. Cao, S. Liu, J. Zhou, G. S. Zakharova, and W. Chen, “Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol,” Applied Surface Science, Vol. 393, pp. 277-284, 2017. [19] C. C. Kuo, C. C. Liu, S. C. He, J. T. Chang, and J. L. He, “Effects of additional oxygen flow on the optical and electrical properties of ion beam sputtering deposited molybdenum-doped zinc oxide layer,” Journal of Nanomaterials, Vol. 2012, p. 562701, 2012. [20] X. Xiu, Z. Pang, M. Lv, Y. Dai, Lina Ye, and S. Han, “Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering,” Applied Surface Science, Vol. 253, pp. 3345-3348, 2007. [21] L. Meng, X. Yang, H. Chai, Z. Lv, and T. Yang, “Surface modification of Al-doped ZnO transparent conductive thin films with polycrystalline zinc molybdenum oxide,” ACS Applied Materials & Interfaces, Vol. 11, pp. 26491–26499, 2019. [22] A. Moran, O. Nwakanma, S. Velumani, and H. Castaneda, “Comparative study of optimised molybdenum back-contact deposition with different barriers (Ti, ZnO)on stainless steel substrate for flexible solar cell application,” Journal of Materials Science: Materials in Electronics, Vol. 31, pp. 7524–7538, 2020. [23] A. L. A. Otaibi, T. Ghrib, M. Alqahtani, M. A. Alharbi, R. Hamdi, and I. Massoudi, “Structural, optical and photocatalytic studies of Zn doped MoO3 nanobelts,” Chemical Physics, Vol. 525, p. 110410, 2019. [24] M. Ichikawa, N. Sugii, K. Hayashi, K. Kubo, K. Yamamoto, and H. Yamauchi, “The crystal structure of “infinite-layer” Sr1−xCuO2−δ thin films,” Advances in Superconductivity, Vol. 5, pp 239-242, 1993. [25] J. Liu, S. Lee, and C. Yang, “Properties of strontium copper oxide films prepared by radio frequency reactive magnetron sputtering with different oxygen partial pressures,” Materials Transactions, Vol. 48, pp. 2743-2746, 2007. [26] E. Bobeico, F. Varsano, C. Minarini, and F. Roca, “P-type strontium–copper mixed oxide deposited by E-beam evaporation,” Thin Solid Films, Vol. 444, pp. 70-74, 2003. [27] H. A. Mohamed, “P-type transparent conducting copper-strontium oxide thin films for optoelectronic devices,” The European Physical Journal Applied Physics, Vol. 56, p. 30301, 2011. [28] J. Robertson and S. J. Clark, “Limits to doping in oxides,” Physical Review B, Vol. 83, p. 075205, 2011. [29] B. Kuiper, D. Samal, D. H. A. Blank, J. E. T. Elshof, G. Rijnders, and G. Koster, “Control of oxygen sublattice structure in ultra-thin SrCuO2 films studied by X-ray photoelectron diffraction,” APL Materials, Vol. 1, p. 042113, 2013. [30] M. Tanaka, M. Hasegawa, and H. Takei, “Growth and anisotropic physical properties of SrCuO2 single crystals,” Physica C: Superconductivity, Vol. 261, pp. 309-314, 1996. [31] V. Young and T. Otagawa, “XPS studies on strontium compounds,” Applications of Surface Science, Vol. 20, pp. 228-248, 1985. [32] C. L. Pettiette, S. H. Yang, M. J. Craycraft, J. Conceicao, R. T. Laaksonen, O. Cheshnovsky, and R. E. Smalley, “Ultraviolet photoelectron spectroscopy of copper clusters,” The Journal of Chemical Physics, Vol. 88, p. 5377, 1988. [33] A. A. M. Farag, “Optical absorption of sodium copper chlorophyllin thin films in UV–vis–NIR region,” Spectrochimica Acta Part A, Vol. 65, pp. 667-672, 2006. [34] L. A. Giannuzzi and F.A. Stevie, “A review of focused ion beam milling techniques for TEM specimen preparation,” Micron, Vol. 30, pp. 197-204, 1999. [35] S. Chander, A. Purohit, A. Nehra, S. P. Nehra, and M. S. Dhaka, “A study on spectral response and external quantum efficiency of mono-crystalline silicon solar cell,” International Journal of Renewable Energy Research, Vol. 5, p. 1, 2015.
|