|
[1]J. S. Loeffler and M. Durante, "Charged particle therapy—optimization, challenges and future directions," Nature reviews Clinical oncology, vol. 10, no. 7, pp. 411-424, 2013. [2]H. M. Kooy, M. Schaefer, S. Rosenthal, and T. Bortfeld, "Monitor unit calculations for range-modulated spread-out Bragg peak fields," Physics in Medicine Biology, vol. 48, no. 17, p. 2797, 2003. [3]B. Sun, D. Lam, D. Yang, K. Grantham, T. Zhang, S. Mutic, and T. Zhao, "A machine learning approach to the accurate prediction of monitor units for a compact proton machine," Medical physics, vol. 45, no. 5, pp. 2243-2251, 2018. [4]L. Z. Braunstein and O. Cahlon, "Potential morbidity reduction with proton radiation therapy for breast cancer," in Seminars in Radiation Oncology, 2018, vol. 28, no. 2, pp. 138-149: Elsevier. [5]J. Van Dyk, R. Barnett, J. Cygler, and P. Shragge, "Commissioning and quality assurance of treatment planning computers," International Journal of Radiation Oncology* Biology* Physics, vol. 26, no. 2, pp. 261-273, 1993. [6]T. Yamashita, T. Akagi, T. Aso, A. Kimura, and T. Sasaki, "Effect of inhomogeneity in a patient's body on the accuracy of the pencil beam algorithm in comparison to Monte Carlo," Physics in Medicine Biology, vol. 57, no. 22, p. 7673, 2012. [7]P. A. Taylor, S. F. Kry, and D. S. Followill, "Pencil beam algorithms are unsuitable for proton dose calculations in lung," International Journal of Radiation Oncology* Biology* Physics, vol. 99, no. 3, pp. 750-756, 2017. [8]D. Maes, S. Bowen, A. Fung, J. Saini, C. Bloch, A. Egan, J. Zeng, R. Rengan, and T. Wong, "Dose comparison between proton pencil beam and Monte Carlo dose calculation algorithm in lung cancer patients," International Journal of Radiation Oncology, Biology, Physics, vol. 99, no. 2, p. E694, 2017. [9]B. K. Sasidharan, S. Aljabab, J. Saini, T. Wong, G. Laramore, J. Liao, U. Parvathaneni, and S. R. Bowen, "Clinical Monte Carlo versus pencil beam treatment planning in nasopharyngeal patients receiving IMPT," International journal of particle therapy, vol. 5, no. 4, pp. 32-40, 2019. [10]X. Liang, Z. Li, D. Zheng, J. A. Bradley, M. Rutenberg, and N. Mendenhall, "A comprehensive dosimetric study of Monte Carlo and pencil‐beam algorithms on intensity‐modulated proton therapy for breast cancer," Journal of Applied Clinical Medical Physics, vol. 20, no. 1, pp. 128-136, 2019. [11]F. Tommasino, F. Fellin, S. Lorentini, and P. Farace, "Impact of dose engine algorithm in pencil beam scanning proton therapy for breast cancer," Physica Medica, vol. 50, pp. 7-12, 2018. [12]S. Rana, K. Greco, E. J. J. Samuel, and J. Bennouna, "Radiobiological and dosimetric impact of RayStation pencil beam and Monte Carlo algorithms on intensity‐modulated proton therapy breast cancer plans," Journal of Applied Clinical Medical Physics, vol. 20, no. 8, pp. 36-46, 2019. [13]X. Liang, J. A. Bradley, D. Zheng, M. Rutenberg, R. M. Vega, N. Mendenhall, and Z. Li, "The impact of dose algorithms on tumor control probability in intensity-modulated proton therapy for breast cancer," Physica Medica, vol. 61, pp. 52-57, 2019. [14]P. Giraud, P. Giraud, A. Gasnier, R. El Ayachy, S. Kreps, J.-P. Foy, C. Durdux, F. Huguet, A. Burgun, and J.-E. Bibault, "Radiomics and machine learning for radiotherapy in head and neck cancers," Frontiers in oncology, vol. 9, p. 174, 2019. [15]H. Abdollahi, S. Mostafaei, S. Cheraghi, I. Shiri, S. R. Mahdavi, and A. Kazemnejad, "Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study," Physica Medica, vol. 45, pp. 192-197, 2018. [16]V. Kearney, J. W. Chan, G. Valdes, T. D. Solberg, and S. S. Yom, "The application of artificial intelligence in the IMRT planning process for head and neck cancer," Oral Oncology, vol. 87, pp. 111-116, 2018. [17]M. Filippi, M. Horsfield, H. Ader, F. Barkhof, P. Bruzzi, A. Evans, J. Frank, R. Grossman, H. McFarland, and P. Molyneux, "Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis," Annals of neurology, vol. 43, no. 4, pp. 499-506, 1998. [18]T. F. De Laney and H. M. Kooy, Proton and charged particle radiotherapy. Lippincott Williams & Wilkins, 2008. [19]H. M. Kooy, S. J. Rosenthal, M. Engelsman, A. Mazal, R. L. Slopsema, H. Paganetti, and J. B. Flanz, "The prediction of output factors for spread-out proton Bragg peak fields in clinical practice," Physics in Medicine Biology, vol. 50, no. 24, p. 5847, 2005. [20]H. M. Kooy, M. Schaefer, S. Rosenthal, and T. Bortfeld, "Monitor unit calculations for range-modulated spread-out Bragg peak fields," Physics in Medicine Biology vol. 48, no. 17, p. 2797, 2003. [21]N. Sahoo, X. R. Zhu, B. Arjomandy, G. Ciangaru, M. Lii, R. Amos, R. Wu, and M. T. Gillin, "A procedure for calculation of monitor units for passively scattered proton radiotherapy beams," Medical physics, vol. 35, no. 11, pp. 5088-5097, 2008. [22]S. Ferguson, Y. Chen, C. Ferreira, M. Islam, V. P. Keeling, A. Lau, S. Ahmad, and H. Jin, "Comparability of three output prediction models for a compact passively double‐scattered proton therapy system," Journal of Applied Clinical Medical Physics, vol. 18, no. 3, pp. 108-117, 2017. [23]Q. Zhao, H. Wu, M. Wolanski, D. Pack, P. A. Johnstone, and I. J. Das, "A sector-integration method for dose/MU calculation in a uniform scanning proton beam," Physics in Medicine Biology, vol. 55, no. 3, p. N87, 2010. [24]Y. Zheng, E. Ramirez, A. Mascia, X. Ding, B. Okoth, O. Zeidan, W. Hsi, B. Harris, A. N. Schreuder, and S. Keole, "Commissioning of output factors for uniform scanning proton beams," Medical physics, vol. 38, no. 4, pp. 2299-2306, 2011. [25]G. Valdes, M. F. Chan, S. B. Lim, R. Scheuermann, J. O. Deasy, and T. D. Solberg, "IMRT QA using machine learning: a multi‐institutional validation," Journal of Applied Clinical Medical Physics, vol. 18, no. 5, pp. 279-284, 2017. [26]G. Valdes, R. Scheuermann, C. Hung, A. Olszanski, M. Bellerive, and T. Solberg, "A mathematical framework for virtual IMRT QA using machine learning," Medical physics, vol. 43, no. 7, pp. 4323-4334, 2016. [27]B. K. Sasidharan, S. Aljabab, J. Saini, T. Wong, G. Laramore, J. Liao, U. Parvathaneni, and S. R. Bowen, "Clinical Monte Carlo versus pencil beam treatment planning in nasopharyngeal patients receiving IMPT," International journal of particle therapy, vol. 5, no. 4, pp. 32-40, 2019. [28]R. Glick, R. Gupta, J. Sauer, and A. Woodward, "Proton magnetic resonance of irradiated polyethylene," Polymer, vol. 1, pp. 340-350, 1960. [29]W. D. Newhauser and R. Zhang, "The physics of proton therapy," Physics in Medicine Biology, vol. 60, no. 8, p. R155, 2015. [30]K. Chung, "A pilot study of the scanning beam quality assurance using machine log files in proton beam therapy," Progress in Medical Physics vol. 28, no. 3, pp. 129-133, 2017. [31]C. Bäumer, B. Ackermann, M. Hillbrand, F.-J. Kaiser, B. Koska, H. Latzel, A. Lühr, S. Menkel, and B. Timmermann, "Dosimetry intercomparison of four proton therapy institutions in Germany employing spot scanning," Zeitschrift für Medizinische Physik, vol. 27, no. 2, pp. 80-85, 2017. [32]B. Clasie, N. Depauw, M. Fransen, C. Gomà, H. R. Panahandeh, J. Seco, J. B. Flanz, H. M. Kooy, and Biology, "Golden beam data for proton pencil-beam scanning," Physics in Medicine, vol. 57, no. 5, p. 1147, 2012. [33]S. A. Vora, W. W. Wong, S. E. Schild, G. A. Ezzell, and M. Y. Halyard, "Analysis of biochemical control and prognostic factors in patients treated with either low-dose three-dimensional conformal radiation therapy or high-dose intensity-modulated radiotherapy for localized prostate cancer," International Journal of Radiation Oncology* Biology* Physics, vol. 68, no. 4, pp. 1053-1058, 2007. [34]J. Sorriaux, M. Testa, H. Paganetti, D. Bertrand, J. A. Lee, H. Palmans, S. Vynckier, and E. Sterpin, "Consistency in quality correction factors for ionization chamber dosimetry in scanned proton beam therapy," Medical physics, vol. 44, no. 9, pp. 4919-4927, 2017. [35]T. Marusic, "Ray Cast/Dose Superposition algorithm for proton grid therapy," ed, 2017. [36]A. Anand, N. Sahoo, X. R. Zhu, G. O. Sawakuchi, F. Poenisch, R. A. Amos, G. Ciangaru, U. Titt, K. Suzuki, and R. Mohan, "A procedure to determine the planar integral spot dose values of proton pencil beam spots," Medical physics, vol. 39, no. 2, pp. 891-900, 2012. [37]L. Breiman, "Random forests," Machine learning, vol. 45, no. 1, pp. 5-32, 2001. [38]S. R. Safavian and D. Landgrebe, "A survey of decision tree classifier methodology," IEEE transactions on systems, man, cybernetics, vol. 21, no. 3, pp. 660-674, 1991. [39]S. Weisberg, Applied linear regression. John Wiley & Sons, 2005. [40]G. A. Seber and A. J. Lee, Linear regression analysis. John Wiley & Sons, 2012. [41]G. Li, "Robust regression," Exploring data tables, trends,shapes, vol. 281, p. U340, 1985. [42]V. Verardi and C. Croux, "Robust regression in Stata," The Stata Journal, vol. 9, no. 3, pp. 439-453, 2009. [43]P. Meer, D. Mintz, A. Rosenfeld, and D. Y. Kim, "Robust regression methods for computer vision: A review," International journal of computer vision, vol. 6, no. 1, pp. 59-70, 1991. [44]K. H. Zou, K. Tuncali, and S. G. Silverman, "Correlation and simple linear regression," Radiology, vol. 227, no. 3, pp. 617-628, 2003. [45]A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-67, 1970. [46]A. E. Hoerl and R. W. Kennard, "Ridge regression: applications to nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 69-82, 1970. [47]D. W. Marquardt and R. D. Snee, "Ridge regression in practice," The American Statistician, vol. 29, no. 1, pp. 3-20, 1975. [48]J. Ranstam and J. Cook, "LASSO regression," Journal of British Surgery, vol. 105, no. 10, pp. 1348-1348, 2018. [49]L. Meier, S. Van De Geer, and P. Bühlmann, "The group lasso for logistic regression," Journal of the Royal Statistical Society: Series B, vol. 70, no. 1, pp. 53-71, 2008. [50]R. Tibshirani, "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society: Series B, vol. 73, no. 3, pp. 273-282, 2011. [51]J. H. Friedman, "Greedy function approximation: a gradient boosting machine," Annals of statistics, pp. 1189-1232, 2001. [52]T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016, pp. 785-794. [53]N. Metropolis and S. Ulam, "The monte carlo method," Journal of the American statistical association, vol. 44, no. 247, pp. 335-341, 1949. [54]A. N. Schreuder, D. S. Bridges, L. Rigsby, M. Blakey, M. Janson, S. G. Hedrick, and J. B. Wilkinson, "Validation of the RayStation Monte Carlo dose calculation algorithm using a realistic lung phantom," Journal of Applied Clinical Medical Physics, vol. 20, no. 12, pp. 127-137, 2019. [55]A. N. Schreuder, D. S. Bridges, L. Rigsby, M. Blakey, M. Janson, S. G. Hedrick, and J. B. Wilkinson, "Validation of the RayStation Monte Carlo dose calculation algorithm using realistic animal tissue phantoms," Journal of Applied Clinical Medical Physics, vol. 20, no. 10, pp. 160-171, 2019. [56]J. Saini, D. Maes, A. Egan, S. R. Bowen, S. St James, M. Janson, T. Wong, and C. Bloch, "Dosimetric evaluation of a commercial proton spot scanning Monte-Carlo dose algorithm: comparisons against measurements and simulations," Physics in Medicine Biology, vol. 62, no. 19, p. 7659, 2017. [57]B. E. Nelms, H. Zhen, and W. A. Tomé, "Per‐beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors," Medical physics, vol. 38, no. 2, pp. 1037-1044, 2011. [58]M. Stasi, S. Bresciani, A. Miranti, A. Maggio, V. Sapino, and P. Gabriele, "Pretreatment patient‐specific IMRT quality assurance: a correlation study between gamma index and patient clinical dose volume histogram," Medical physics, vol. 39, no. 12, pp. 7626-7634, 2012. [59]H. Zhen, B. E. Nelms, and W. A. Tomé, "Moving from gamma passing rates to patient DVH‐based QA metrics in pretreatment dose QA," Medical physics, vol. 38, no. 10, pp. 5477-5489, 2011. [60]S. F. Kry, A. Molineu, J. R. Kerns, A. M. Faught, J. Y. Huang, K. B. Pulliam, J. Tonigan, P. Alvarez, F. Stingo, and D. S. Followill, "Institutional patient-specific IMRT QA does not predict unacceptable plan delivery," International Journal of Radiation Oncology* Biology* Physics, vol. 90, no. 5, pp. 1195-1201, 2014. [61]H. S. Grewal, M. S. Chacko, S. Ahmad, and H. Jin, "Prediction of the output factor using machine and deep learning approach in uniform scanning proton therapy," Journal of Applied Clinical Medical Physics, vol. 21, no. 7, pp. 128-134, 2020. [62]A. M. Kalet, S. M. Luk, and M. H. Phillips, "Radiation therapy quality assurance tasks and tools: the many roles of machine learning," Medical physics, vol. 47, no. 5, pp. e168-e177, 2020. [63]G. Valdes, M. F. Chan, S. B. Lim, R. Scheuermann, J. O. Deasy, and T. D. Solberg, "IMRT QA using machine learning: a multi‐institutional validation," Journal of applied clinical medical physics, vol. 18, no. 5, pp. 279-284, 2017. [64]P. Trnková, A. Bolsi, F. Albertini, D. C. Weber, and A. J. Lomax, "Factors influencing the performance of patient specific quality assurance for pencil beam scanning IMPT fields," Medical physics, vol. 43, no. 11, pp. 5998-6008, 2016.
|