|
[1] Billard, L.; Diday, E. Symbolic Data Analysis: Conceptual Statistics and Data Mining; John Wiley & Sons: London, UK, 2006. [2] Chuang, C.-C.; Jeng, J.-T.; Chang, S.-C. Hausdorff distance measure based interval fuzzy possibilistic C-means clustering algorithm. Int. J. Fuzzy Syst. 2013, 15, 471–479. [3] He, Q.; He, Z.; Duan, S.; Zhong, Y. Multi-objective interval portfolio optimization modeling and solving for margin trading. Swarm Evol. Comput. 2022, 75, 101141. [4] Zhou, B.; Wang, X.; Zhou, J.; Jing, C. Trajectory recovery based on interval forward–backward propagation algorithm fusing multi-source information. Electronics 2022, 11, 3634. [5] Yamaka, W.; Phadkantha, R.; Maneejuk, P. A convex combination approach for artificial neural network of interval data. Appl. Sci. 2021, 11, 3997. [6] Fordellone, M.; De Benedictis, I.; Bruzzese, D.; Chiodini, P. A maximum-entropy fuzzy clustering approach for cancer detection when data are uncertain. Appl. Sci. 2023, 13, 2191. [7] Freitas, W.W.F.; Souza, R.M.C.R.; Getúlio, J.A.; Bastian, F. Exploratory spatial analysis for interval data: A new autocorrelation index with COVID-19 and rent price applications. Expert Syst. Appl. 2022, 195, 116561. [8] Chang, W.; Ji, X.; Liu, Y.; Xiao, Y.; Chen, B.; Liu, H.; Zhou, S. Analysis of university students’ behavior based on a fusion k-means clustering algorithm. Appl. Sci. 2020, 10, 6566. [9] Zhang, R.-L.; Liu, X.-H. A novel hybrid high-dimensional pso clustering algorithm based on the cloud model and entropy. Appl. Sci. 2023, 13, 1246. [10] Dougherty, E.R.; Brun, M. A probabilistic theory of clustering. Pattern Recognit. Soc. 2004, 37, 917–925. [11] Volkovich, Z.; Avros, R.; Golani, M. On initialization of the expectation maximization clustering algorithm. Glob. J. Technol. Optim. 2011, 2, 1-4. [12] Sun, T.; Shu, C.; Li, F.; Yu, H.; Ma, L.; Fang, Y. An efficient hierarchical clustering method for large datasets with map-reduce. In Proceedings of the 2009 International Conference on Parallel and Distributed Computing, Applications and Technologies, Boston, MA, USA, 24–26 September 2009; pp. 494–499. [13] Li, M.; Deng, S.; Wang, L.; Feng, S.; Fan, J. Hierarchical clustering algorithm for categorical data using a probabilistic rough set model. Knowl. Based Syst. 2014, 65, 60–71. [14] Patel, S.; Sihmar, S.; Jatain, A. A study of hierarchical clustering algorithms. In Proceedings of the 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2015; pp. 537–541. [15] Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100–108. [16] Park, H.S.; Jun, C.H. A simple and fast algorithm for K-medoids clustering. Expert Syst. Appl. 2009, 36, 3336–3341. [17] Fahad, A.; Alshatri, N.; Tari, Z.; Alamri, A.; Khalil, I.; Zomaya, A.Y.; Foufou, S.; Bouras, A. A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput. 2014, 2, 267–279. [18] Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy C-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [19] Mújica-Vargas, D.; Kinani, J.M.V.; Rubio, J.D. Color-based image segmentation by means of a robust intuitionistic fuzzy C-means algorithm. Int. J. Fuzzy Syst. 2020, 22, 901–916. [20] Gao, Y.; Li, H.; Li, J.; Cao, C.; Pan, J. Patch-based fuzzy local weighted C-means clustering algorithm with correntropy induced metric for noise image segmentation. Int. J. Fuzzy Syst. 2023, 25, 1991–2006. [21] Hussain, I.; Sinaga, K.P.; Yang, M.-S. Unsupervised multiview fuzzy C-means clustering algorithm. Electronics 2023, 12, 4467. [22] Shi, Y. Application of FCM clustering algorithm in digital library management system. Electronics 2022, 11, 3916. [23] Tang, Y.; Chen, R.; Xia, B. VSFCM: A novel viewpoint-driven subspace fuzzy C-means algorithm. Appl. Sci. 2023, 13, 6342. [24] Wang, Y.; Qin, Q.; Zhou, J.; Chen, Y.; Han, S.; Wang, L.; Du, T.; Ji, K.; Zhao, Y.O.; Zhang, K. Guided filter-based fuzzy clustering for general data analysis. Int. J. Fuzzy Syst. 2023, 25, 2036–2051. [25] Sousa, Á.; Silva, O.; Bacelar-Nicolau, L.; Cabral, J.; Bacelar-Nicolau, H. Comparison between two algorithms for computing the weighted generalized affinity coefficient in the case of interval data. Stats 2023, 6, 1082–1094. [26] Roh, S.B.; Oh, S.K.; Pedrycz, W.; Wang, Z.; Fu, Z.; Seo, K. Design of iterative fuzzy radial basis function neural networks based on iterative weighted fuzzy C-means clustering and weighted LSE estimation. IEEE Trans. Fuzzy Syst. 2022, 30, 4273–4285. [27] Huang, Y.P.; Bhalla, K.; Chu, H.C.; Lin, Y.C.; Kuo, H.C.; Chu, W.J.; Lee, J.H.; et al. Wavelet k-means clustering and fuzzy-based method for segmenting MRI images depicting Parkinson’s disease. Int. J. Fuzzy Syst. 2021, 23, 1600–1612. [28] Elsheikh, S.; Fish, A.; Zhou, D. Exploiting spatial information to enhance DTI segmentations via spatial fuzzy C-means with covariance matrix data and non-euclidean metrics. Appl. Sci. 2021, 11, 7003. [29] Höppner, F.; Klawonn, F. Improved fuzzy partitions for fuzzy regression models. Int. J. Approx. Reason 2003, 32, 85–102. [30] Zhu, L.; Chung, F.-L.; Wang, S. Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 578–591. [31] Xu, L.; Krzyzak, A.; Oja, E. Rival penalized competitive learning for clustering analysis, rbf net, and curve detection. IEEE Trans. Neural Netw. 1993, 4, 636–649. [32] Jeng, J.-T.; Chen, C.-M.; Chang, S.-C.; Chuang, C.-C. IPFCM clustering algorithm under Euclidean and Hausdorff distance measure for symbolic interval data. Int. J. Fuzzy Syst. 2019, 21, 2102–2119. [33] Chen, C.-M.; Chang, S.-C.; Chuang, C.-C.; Jeng, J.-T. Rough IPFCM clustering algorithm and its application on smart phones with Euclidean distance. Appl. Sci. 2022, 12, 5195. [34] Chang, S.-C.; Chuang, W.-C.; Jeng, J.-T. New interval improved fuzzy partitions fuzzy C-means clustering algorithms under different distance measures for symbolic interval data analysis. Appl. Sci. 2023, 13, 12531. [35] Hazarika, I.; Mahanta, A.K. A new semimetric for interval data. Int. J. Recent Technol. Eng. 2019, 8, 1–9. [36] De Souza, R.M.C.R.; De Carvalho, F.A.T. Clustering of interval data based on city–block distances. Pattern Recognit. Lett. 2004, 25, 353–365. [37] De Carvalho, F.D.A.T.; Brito, P.; Bock, H.-H. Dynamic clustering for interval data based on L₂ distance. Comput. Statist. 2006, 21, 231–250. [38] Gosset, W.S. The probable error of a mean. Biometrika. 1908, 6, 1–25. [39] De Carvalho, F.D.A.; de Souza, R.M.; Chavent, M.; Lechevallier, Y. Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recognit. Lett. 2006, 27, 167–179. [40] S.-C. Chang, W.-C.; Chuang, J.-T. Jeng. Interval improved fuzzy partitions fuzzy C-means under Hausdorff distance. IET International Conference on Engineering Technologies and Applications (ICETA 2023), 2023. [41] Chang, S.-C.; Jeng, J.-T. Interval generalized improved fuzzy partitions fuzzy C-means under Hausdorff distance clustering algorithm. Int. J. Fuzzy Syst. 2024. (已接受)
|