1.馮桐,蘇永要,徐照英,陳立偉,王錦標,楊海峰,劉代軍
,2019,輕量化、高強度汽車鋼板的應用與研發進展,汽車發展協會。
2.王作成,2008,無間隙原子鋼發展歷史,上海艾利艾金屬材料股份有限公司,產品展示普鋼。
3.馮桐,蘇永要,徐照英,陳立偉,王錦標,楊海峰,劉代軍,2018,輕量化,高強度汽車鋼板的應用與研發進展,電銲鐵,vol.48,No.5,PP.90~95。
4.Cheng, C., Wan, M., Meng, B., Fu, M.W. ,2019, Characterization of the microscale forming limit for metal foils considering free surface roughening and failure mechanism transformation, J. Mater. Process. Tech., 272, 111-124.
5.Ray, R.K., Ghosh, P., Bhattacharjee, D. ,2009,Effects of composition and processing parameters on precipitation and texture formation in microalloyed interstitial free high strength (IFHS) steels, Mater. Sci. Tech., 25, 1154-1167..
6.Kubo, M., Hama, T., Tsunemi, Y., Nakazawa, Y., Takuda, H. ,2018,. Influence of strain ratio on surface roughening of IF steel sheets, ISIJ International, 58, 704-713.
7.Mukherjee, S., Kundu, A., Sarathi De, P., Kumar Mahato, J., Chakraborti, P.C., Shome, M., Bhattacharjee, D. ,2020,Insitu investigation of tensile deformation behavior of cold-rolled interstitial-free high-strength steel in scanning electron microscope, Mater. Sci. Eng. A, 776, 139029.
8.Wu, P.D., Lloyd, D.J,2004, Analysis of surface roughening in AA6111 automotive sheet, Acta Mater., 52, 1785-1798.
9.Wittridge, N.J., Knutsen, R.D. (1999). A microtexture based analysis of the surface roughening behavior of an aluminum alloy during tensile deformation, Mater. Sci. Eng., A269, 205-216.
10.Wu, P.D., Lloyd, D.J. (2004). Analysis of surface roughening in AA6111 automotive sheet, Acta Mater., 52, 1785-1798.
11.D. Kuhlmann-Wilsdorf and C. Lair , 1980,“Dislocations Behavior in Fatigue: Part Ⅴ.Breakdown the Loop Patches and Formation Persistent Slip Band and of Dislocation Cells”, Mater. Sci. Eng , 46209-219.
12.LUO Wu-si , LI Lin , ZHOU ore-feng , YU Shi-ping , WANG Yi-ran , WANG Jian-guo , LIN Yi , HUANG Jin-ping , Method of Surface Waviness Testing for Automotive Steel Sheets,PTCA(PART A: PHYS.TEST) ,vol51 , PP.570~574.
13.D. Kuhlmann-Wilsdorf and C. Lair , 1980,“Dislocations Behavior in Fatigue: Part Ⅴ.Breakdown the Loop Patches and Formation Persistent Slip Band and of Dislocation Cells”, Mater. Sci. Eng , 46209-219.
14.陳靖惠,薛乃綺,2017,汽車輕量化材料發展趨勢,工業材料雜誌vol.363,PP.128~133。
15.陳煌泉,2007,鋼鐵產品製造與應用簡報,中國鋼鐵公司 鋼鋁研究發展處,鋼鐵產品發展組。
16.崔德理,王先進,金山同,1994,超低碳鋼的歷史與發展,汽車技術,PP.38~46。
17.馬衍偉,王先進,1998,超深衝IF鋼研究的最新進展,鋼鐵,vol4,PP.65~68。
18.李洪翠,2013,冷軋板衝壓橘皮缺陷分析,山東冶金,vol.35,No.1,PP.40~43。
19.班必俊,2009,材料晶粒尺寸及變形率對鋼板加工變形後表面粗糙度的影響,寶山鋼鐵,PP.1~5。
20.覃奇賢,劉淑蘭,2009,表面粗糙度,Plating and Finishing ,vol.31,No.6,PP.31~34。
21.陳福榮,2002,電子顯微鏡繞射技術及菊池線判斷 P.11~P.18。
22.ORANGE PEEL / DOL , BYK-Gardner GmbH , Lausitzer , Strasse , 8 , 82538 Geretsried , Germany.
23.Michael Bonner,2018,Dissecting Orange Peel - A Process-Oriented Approach, Part1 ,Paint Coatings Industry.
24.Michae l Bonner , 2018 , Dissecting Orange Peel – A Process-Oriented Approach, Part II , Paint Coatings Industry.
25.徐偉志,張維哲,孫佩玲,張六文,2015,高解析電子背向繞射在極低碳冷軋鋼片初期再結晶的應用,礦冶,vol.59/3,PP.59~68。
26.Pampa Ghosh , Chiradeep Ghosh , R.K. Ray , 2010 , Thermodynamics of precipitation and textural development in batch-annealed interstitial-free high-strength steels , Acta Materialia , vol.58 , PP.3842~3850.
27.P. Ghosh , R.K. Ray , Bhattacharya , S. Bhargava , 2006 , Precipitation and texture formation in two cold rolled and batch annealed interstitial-free high strength steels ,Scripta Materialia ,vol.55,PP.271~274
28.P. Ghosh , B. Bhattacharya , R.K. Ray , 2007 , Comparative study of precipitation behavior and texture formation in cold rolled-batch annealed and cold rolled-continuous annealed interstitial free high strength steels , Scripta Materialia , vol.56, PP.657~660.
29.H. Inagaki , 1994 , "Fundamental Aspect of Texture Formation in Low Carbon Steel," , ISIJ International ,vol.34 , PP.313~321.
30.ATSM INTERNATIONAL , 2013 , Standard Test Methods for Determining Average Grain Size , ATSM E112 – 13.
31.張家豪,2016,熱軋後冷卻速率對商用1050鋁冷軋及熱處理後的微結構及再結晶集合組織的影響,國立中山大學材料與光電科學碩士論文32.洪英傑,郭育秀,2014,電子背散射繞射技術最新發展,奈米通訊,vol.21,No.3/4,PP.8~13。
33.V. Randle , O. Engler, 2000 , Introduction to Texture Analysis: Macrotexture,
Microtexture and Orientation Mapping,” CRC press.
34.羅聖全,2002,掃描式電子顯微鏡 P.2~P.3。
35.連振昌,2006,差排結構與強化,工程材料,P.18~P.21。
36.D. Kuhlmann-Wilsdorf and C. Lair , 1980,“Dislocations Behavior in Fatigue: Part Ⅴ.Breakdown the Loop Patches and Formation Persistent Slip Band and of Dislocation Cells”, Mater. Sci. Eng , 46209-219.
37.Zhou, X.H., Su, X. ,2011, Effects of deformation mode on surface roughening of austenitic stainless steels, Mater. Sci. Techol., 27, 1040-1044.
38.薛乃綺,2019,汽車輕量化材料發展趨勢,工業材料雜誌vol.391,PP.90~95。
39.Hardik J. Chauhan1, Anil Chouhan , Shanti Lal Meena, 2016 , EXPERIMENTAL INVESTIGATION AND NON DESTRUCTIVE TESTING OF FRICTION STIR WELDED ALUMINIUM ALLOY AA 6082 USING TOOL WITH AND WITHOUT SHOULDER GEOMETRY , International Research Journal of Engineering and Technology (IRJET) , vol.3, No.5 , PP.2656~2664.
40.Wu, P.D., Lloyd, D.J,2004, Analysis of surface roughening in AA6111 automotive sheet, Acta Mater., 52, 1785-1798.
41.Kotiba Hamad, Bong Kwon Chung, Young Gun Ko , 2014 , Effect of deformation path on microstructure, microhardness and texture evolution of interstitial free steel fabricated by differential speed rolling , MATERIALS CHARACTERIZATION , vol.94 , PP.203~214.
42.Raabe, D., Sachtleber, M., Weiland, H., Scheele, G., Zhao, Z. ,2003, Grain-scale micromechanics of polycrystal surface during plastic straining, Acta Mater., 51, 1539-1560.
43.黃議興,軋沿冶金技術概論簡報,中國鋼鐵公司 鋼鋁研究發展處,鋼鐵產品發展組。