|
[1] Touré, B., Faye, B., Kane, A. W., Lo, C. M., Niang, B., & Boucher, Y. 2011, “Analysis of reasons for extraction of endodontically treated teeth: a prospective study”, Journal of endodontics, 37(11), 1512-1515. [2] RIVERA, E. M., & WALTON, R. E. 2007, “Longitudinal tooth fractures: findings that contribute to complex endodontic diagnoses”, Endodontic Topics, 16(1), 82-111. [3] Sedgley, C. M., & Messer, H. H. 1992, “Are endodontically treated teeth more brittle?”, Journal of endodontics, 18(7), 332-335. [4] Reeh, E. S., Messer, H. H., & Douglas, W. H. 1989, “Reduction in tooth stiffness as a result of endodontic and restorative procedures”, Journal of endodontics, 15(11), 512-516. [5] Dai, L. X., Tong, W. L., & Guo, J. L. 2013, “The role of occlusal factors in the occurrence of vertical root fracture”, Shanghai kou Qiang yi xue= Shanghai Journal of Stomatology, 22(1), 68-71. [6] Barreto, M. S., do Amaral Moraes, R., da Rosa, R. A., Moreira, C. H. C., Só, M. V. R., & Bier, C. A. S. 2012, “Vertical root fractures and dentin defects: effects of root canal preparation, filling, and mechanical cycling”, Journal of endodontics, 38(8), 1135-1139. [7] Wilcox, L. R., Roskelley, C., & Sutton, T. 1997, “The relationship of root canal enlargement to finger-spreader induced vertical root fracture”, Journal of Endodontics, 23(8), 533-534. [8] Saw, L. H., & Messer, H. H. 1995, “Root strains associated with different obturation techniques”, Journal of Endodontics, 21(6), 314-320. [9] Vertucci FJ. Management of vertical root fracture. J Endod 1985;11(3):126-31. [10] Jenhani, I., Amor, N. B., & Elouedi, Z. 2008, “Decision trees as possibilistic classifiers”, International journal of approximate reasoning, 48(3), 784-807. [11] Charbuty, B., & Abdulazeez, A. 2021, “Classification based on decision tree algorithm for machine learning”, Journal of Applied Science and Technology Trends, 2(01), 20-28. [12] Granik, M., & Mesyura, V. 2017, May, “Fake news detection using naive Bayes classifier”, In 2017 IEEE first Ukraine conference on electrical and computer engineering (UKRCON) (pp. 900-903). IEEE. [13] Zhang, Y. 2012, “Support vector machine classification algorithm and its application”, In Information Computing and Applications: Third International Conference, ICICA 2012, Chengde, China, September 14-16, 2012. Proceedings, Part II 3 (pp. 179-186). Springer Berlin Heidelberg. [14] Altman, N. S. 1992, “An introduction to kernel and nearest-neighbor nonparametric regression”, The American Statistician, 46(3), 175-185. [15] Wang, C., Long, Y., Li, W., Dai, W., Xie, S., Liu, Y., ... & Duan, Y. 2020, “Exploratory study on classification of lung cancer subtypes through a combined K-nearest neighbor classifier in breathomics”, Scientific reports, 10(1), 5880. [16] Ho, T. K. 1995, August, “Random decision forests”, In Proceedings of 3rd international conference on document analysis and recognition (Vol. 1, pp. 278-282). IEEE. [17] Schonlau, M., & Zou, R. Y. 2020, “The random forest algorithm for statistical learning”, The Stata Journal, 20(1), 3-29. [18] Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. 2021, “A survey of convolutional neural networks: analysis, applications, and prospects”, IEEE transactions on neural networks and learning systems. [19] Schmidt, R. M. 2019, “Recurrent neural networks (rnns): A gentle introduction and overview”, arXiv preprint arXiv:1912.05911. [20] Singh, A., Dargar, S. K., Gupta, A., Kumar, A., Srivastava, A. K., Srivastava, M., ... & Ullah, M. A. 2022, “Evolving long short-term memory network-based text classification”, Computational Intelligence and Neuroscience, 2022. [21] Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. 2021, “A review on generative adversarial networks: Algorithms, theory, and applications”, IEEE transactions on knowledge and data engineering, 35(4), 3313-3332. [22] Khanagar, S. B., Al-Ehaideb, A., Maganur, P. C., Vishwanathaiah, S., Patil, S., Baeshen, H. A., ... & Bhandi, S. 2021, “Developments, application, and performance of artificial intelligence in dentistry–A systematic review”, Journal of dental sciences, 16(1), 508-522. [23] Boreak, N. 2020, “Effectiveness of artificial intelligence applications designed for endodontic diagnosis, decision-making, and prediction of prognosis: a systematic review”, J Contemp Dent Pract, 21(8), 926-934. [24] Saghiri, M. A., Asgar, K., Boukani, K. K., Lotfi, M., Aghili, H., Delvarani, A., ... & Garcia‐Godoy, F. 2012, “A new approach for locating the minor apical foramen using an artificial neural network”, International endodontic journal, 45(3), 257-265. [25] Campo, L., Aliaga, I. J., De Paz, J. F., García, A. E., Bajo, J., Villarubia, G., & Corchado, J. M. 2016, “Retreatment predictions in odontology by means of CBR systems”, Computational Intelligence and Neuroscience, 2016, 39-39. [26] Mahmoud, Y. E., Labib, S. S., & Mokhtar, H. M. 2015, December, “Clinical prediction of teeth periapical lesion based on machine learning techniques”, In The Second International Conference on Digital Information Processing, Data Mining, and Wireless Communications (DIPDMWC2015) (pp. 9-15). [27] Ekert, T., Krois, J., Meinhold, L., Elhennawy, K., Emara, R., Golla, T., & Schwendicke, F. 2019, “Deep learning for the radiographic detection of apical lesions”, Journal of endodontics, 45(7), 917-922. [28] Orhan, K., Bayrakdar, I. S., Ezhov, M., Kravtsov, A., & Özyürek, T. A. H. A. 2020, “Evaluation of artificial intelligence for detecting periapical pathosis on cone‐beam computed tomography scans”, International endodontic journal, 53(5), 680-689. [29] Johari, M., Esmaeili, F., Andalib, A., Garjani, S., & Saberkari, H. 2017, “Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study”, Dentomaxillofacial Radiology, 46(2), 20160107. [30] Fukuda, M., Inamoto, K., Shibata, N., Ariji, Y., Yanashita, Y., Kutsuna, S., ... & Ariji, E. 2020, “Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography”, Oral Radiology, 36, 337-343. [31] Hatvani, J., Horváth, A., Michetti, J., Basarab, A., Kouamé, D., & Gyöngy, M. 2018, “Deep learning-based super-resolution applied to dental computed tomography”, IEEE Transactions on Radiation and Plasma Medical Sciences, 3(2), 120-128. [32] Hiraiwa, T., Ariji, Y., Fukuda, M., Kise, Y., Nakata, K., Katsumata, A., ... & Ariji, E. 2019, “A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography”, Dentomaxillofacial Radiology, 48(3), 20180218. [33] Kuwada, C., Ariji, Y., Fukuda, M., Kise, Y., Fujita, H., Katsumata, A., & Ariji, E. 2020, “Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs”, Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 130(4), 464-469. [34] Chen, H., Zhang, K., Lyu, P., Li, H., Zhang, L., Wu, J., & Lee, C. H. 2019, “A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films”, Scientific reports, 9(1), 3840. [35] Luo, Y., Zhou, H., Tu, W. W., Chen, Y., Dai, W., & Yang, Q. 2020, July, “Network on network for tabular data classification in real-world applications”, In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 2317-2326). [36] Panda, S. K., & Jana, P. K. 2015, “Efficient task scheduling algorithms for heterogeneous multi-cloud environment”, The Journal of Supercomputing, 71, 1505-1533. [37] Kingma, D. P., & Ba, J. 2014, “Adam: A method for stochastic optimization”, arXiv preprint arXiv:1412.6980. [38] Glorot, X., Bordes, A., & Bengio, Y. 2011, June, “Deep sparse rectifier neural networks”, In Proceedings of the fourteenth international conference on artificial intelligence and statistics (pp. 315-323). JMLR Workshop and Conference Proceedings.
|