|
[1] International Roadmap for Devices and Systems, (2020) 9-27. [2] S.Y. Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, C.H. Tsai, P.N. Chen, T. Miyashita, C.H. Chang, V. S. Chang, K. H. Pan, J. H. Chen, Y. S. Mor, K. T. Lai, C. S. Liang, H. F. Chen, S. Y. Chang, C. J. Lin, C. H. Hsieh, R. F. Tsui, C. H. Yao, C. C. Chen, R. Chen, C. H. Lee, H. J. Lin, C. W. Chang, K. W. Chen, M. H. Tsai, K. S.Chen, Y. Ku, and S. M. Jang, A 7nm CMOS Platform Technology Featuring 4th Generation FinFET Transistors with a 0.027um2 High Density 6-T SRAM cell for Mobile SoC Applications, IEDM, Session 2.6 (2016) 16-43. [3] M. A. Nicolet, Diffusion Barriers in Thin Films, Thin Solid Films, 52(3) (1978) 415-443. [4] N. Loubet, T. Hook, P. Montanini, C. W. Yeung, S. Kanakasabapathy, M. Guillom, T. Yamashita, J. Zhang, X. Miao, J. Wang, A. Young, R. Chao, M. Kang, Z. Liu, S. Fan, B. Hamieh, S. Sieg, Y. Mignot, W. Xu, S.C. Seo, J. Yoo, S. Mochizuki, M. Sankarapandian, O. Kwon, A. Carr, A. Greene, Y. Park, J. Frougier, R. Galatage, R. Bao, J. Shearer, H. Jagannathan, D. Corliss, M. H. Na, A. Knorr, T. Wu, D. Gupta, S. Lian, R. Divakaruni, T. Gow, C. Labelle, S. Lee, V. Paruchuri, H. Bu, and M. Khare, “Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET”, IEEE (2017) 230-231. [5] Samsung, Samsung Announces 3 nm GAA MBCFET PDK, ANANDTECH, (2019). [6] J. S. Yoon, J. Jeong, S. Lee, and R. H. Baek, Sensitivity of Source/Drain Critical DimensionVariations for Sub-5-nm Node Fin and Nanosheet FETs, IEEE Electro. Dev., 67(1) (2020) 258-262. [7] M. Lapedus, What Will Replace Dual Damascene?, Semiconductor Engineering, (2013). [8] W.Z. Xu, J.B. Xu, H.S. Lu, J.X. Wang, Z.J. Hu, and X.P. Qu, Direct Copper Plating on Ultra-Thin Sputtered Cobalt Film in an Alkaline Bath, J. Electrochem. Soc., 160(12) (2013) D3075-D3080. [9] Fatima Zohra Bouzit, Abderrafik Nemamcha, Hayet Moumeni, and Jean Luc Rehspringer, Morphology and Rietveld analysis of nanostructured Co-Ni electrodeposited thin films obtained at different current densities, Surf. & Coating Technol., 315 (2017) 172-180. [10] Umut Sarac, M. Celalettin Baykul, and Yasin Uguz, Differences Observed in the Phase Structure, Grain Size-Shape, and Coercivity Field of Electrochemically Deposited Ni-Co Thin Films with Different Co Contents, Superconductivity and Novel Magnetism, 28 (2015) 3105-3110. [11] Y. H. You, C. D. Gu, X. L. Wang, and J. P. Tu, Electrodeposition of Ni-Co alloys from a deep eutectic solvent, Surf. & Coating Technol., 206(17) (2012) 3632-3638. [12] O. Varela Pedreira, K. Croes, A. LeĞniewska, C. Wu, M. H. van der Veen, J. de Messemaeker, K. Vandersmissen, N. Jourdan, L.G. Wen, C. Adelmann, B. Briggs, V. Vega Gonzalez, J. Bömmels, Zs. TĘkei, Reliability Study on Cobalt and Ruthenium as Alternative Metals for Advanced Interconnects, IEEE Inter. Reliab. Phys. Symp. (IRPS), 6B (2017) 2.1-2.8. [13] J. H. Park, D. Y. Moon, D. S. Han, Y. J. Kang, S. R. Shin, H. T. Jeon, and J. W. Park, Plasma-enhanced atomic layer deposition (PEALD) of cobalt thin films for copper direct electroplating, Surf. & Coating Technol., 259 A (2014) 98-101. [14] S. Dutta, S. Beyne, A. Gupta, S. Kundu, H. Bender, S. V. Elshocht, G. Jamieson, W. Vandervorst, J. Bömmels, C. J. Wilson, Z. Tokei, and C. Adelmann, Sub-100 nm2 Cobalt Interconnects, IEEE Electro. Dev. Lett., 39(5) (2018) 731-734. [15] L. Chen, D. Ando, Y. Sutou, D. Gall, and J. Koike, NiAl as a potential material for liner- and barrier-free interconnect in ultrasmall technology node, Appl. Phys. Lett., 113 (2018) 183503-183506. [16] T. D. M. E. Hansen, A. Dolocan, and J. G. Ekerd, Atomic interdiffusion and diffusive stabilization of cobalt by copper during atomic layer deposition from bis(N-tertbutyl-N′ ethylpropionamidinato) cobalt(II), J. Phys. Chem. Lett. 5 (2014) 1091-1095. [17] J. Wu, F. Wafula, S. Branagan, H. Suzuki, and J. V. Eisden, Mechanism of Cobalt Bottom-Up Filling for Advanced Node Interconnect Metallization, J. Electrochem. Soc., 166 (1) (2019) D3136-D3141. [18] Z. Li, Y. Tian, C. Teng, and H. Cao, Recent Advances in Barrier Layer of Cu Interconnects, Materials (Basel), 13(21), 5049 (2020) 5049-5071. [19] C. R. M. Grovenor, Microelectronic Materials, Adam Hilger Book Company, (1989) 238. [20] A. C. Frank, and P. T. A. Sumodjo, Electrodeposition of cobalt from citrate containing baths, Electrochim. Acta., 132 (2014) 75-82. [21] L. Oniciu, and L. Muresan, Some fundamental aspects of leveling and brightening in metal electordepostion, J. Appl. Chem., 21 (1991) 565-574. [22] P. Altimari, P. C. Schiavi, A. Rubino, and F. Pagnanelli, Electrodeposition of cobalt nanoparticles:An analysis of the mechanisms behind the deviation from three-dimensional diffusion-control, J. Electroanal. Chem., 851 (2019) 113413-113427. [23] P. G. Schiavi, P. Altimari, R. Zanoni, and F. Pagnanelli, Morphology controlled synthesis of cobalt nanostructures by facile electrodeposition:transition from hexagonal nanoplatelets to nanoflakes, Electrochim. Acta., 220 (2016) 405-416. [24] B. C. Tripathy, P. Singh, and D. M. Muir, Effect of manganese(II) and boric acid on the electrowinning of cobalt from acidic sulfate solutions, Metall. Mater. Trans. B, 32 (2001) 395-399. [25] J. Ji, W. C. Cooper, D. B. Dreisinger, and E. Peters, Surface pH measurements during nickel electrodeposition, J. Appl. Chem., 25 (1995) 642-650. [26] J. Horkans, On the Role of Buffers and Anions in NiFe Electrodeposition, J. Electrochem. Soc., 126(11) (1979) 1861-1867. [27] Y. Tsuru, M. Nomura, and F. R. Foulkes, Effects of boric acid on hydrogen evolution and internal stress in films deposited from a nickel sulfamate bath, J. Appl. Chem., 32 (2002) 629-634. [28] B. Pan, Q. Zhang, Z. Liu, and Y. Yang, Influence of butynediol and tetrabutylammonium bromide on the morphology and structure of electrodeposited cobalt in the presence of saccharin, Mater. Chem. Phys., 228 (2019) 37-44. [29] G. Panzeri, A. Accogli, E. Gibertini, S. Varotto, C. Rinaldi, L. Nobili, and L. Magagnin, Electrodeposition of cobalt thin films and nanowires from ethylene glycol-based solution, Electrochem. Commun., 103 (2019) 31-36. [30] R. Sivasubramanian, and M. V. Sangaranarayanan, Boric acid assisted electrosynthesis of hierarchical three-dimensional cobalt dendrites and microspheres, Mater. Chem. Phys., 136(2-3), 15 (2012) 448-454. [31] O. E. Kongstein, G. M. Haarberg, and J. Thonstad, Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I:The influence of current density, pH and temperature, J. Appl. Electrochem., 37(6) (2007) 669-674. [32] J. Lu, D. Dreisinger, and T. Glück, Cobalt electrowinning-A systematic investigation for high quality electrolytic cobalt production, Hydrometallurgy, 178 (2018) 19-29. [33] D. Grujicic, and B. Pesic, Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions, Electrochim. Acta., 49(26) (2004) 4719-4732. [34] J. T. Matsushima, F. T. Strixino, and E. C. Pereira, Investigation of cobalt deposition using the electrochemical quartz crystal microbalance, Electrochim. Acta., 51(10) (2006) 1960-1966. [35] B. R. Tzaneva, A. I. Naydenov, S. Z. Todorova, V. H. Videkov, V. S. Milusheva, and P. K. Stefanov, Cobalt electrodeposition in nanoporous anodic aluminium oxide for application as catalyst for methane combustion, Electrochim. Acta., 191 (2016) 192-199. [36] K. M. Yin, and B. T. Lin, Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel, Surf. Coat. Technol, 78 (1996) 205-210. [37] S. S. A. E. Rehim, M.A.M. Ibrahim, and M. M. Dankeria, Electrodeposition of cobalt from gluconate electrolyte, J. Appl. Electrochem., 32 (2002) 1019-1027. [38] N. Zech, and D. Landolt, The influence of boric acid and sulfate ions on the hydrogen formation in NiFe plating electrolytes, Electrochim. Acta, 45 (2000) 3461-3471. [39] B. V. Tilak, A. S. Gendron, and M. A. Mosoiu, Borate buffer equilibria in nickel refining electrolytes, J. Appl. Electrochem., 7 (1977) 495-500. [40] J. P. Hoare, On the Role of Boric Acid in the Watts Bath, Electrochem. Soc., 133(12) (1986) 2491-2494. [41] E. P. S. Schmitz, S. Percio, J. R. Garcia, C. K. d. Andrade, and M. C. Lopes, Influence of Commercial Organic Additives on the Nickel Electroplating, Int. J. Electrochem. Sci., 11(2) (2016) 983-997. [42] J. A. Juma, The effect of organic additives in electrodeposition of Co from deep eutectic solvents, Arabian J. Chem., 14(4), (2021), 103036-103045. [43] K. Fukuda, Y. Kashiwa, S. Oue, T. Takasu, and H. Nakano, Effect of Additives on the Deposition Behavior and Micro Structure of Invar Fe-Ni Alloys with Low Thermal Expansion Electrodeposited from Watt’s Solution, ISIJ Int., 61(3) (2021) 919-928. [44] B. W. Gregory, D. W. Suggs, and J. L. Stickney, Conditions for the Deposition of CdTe by Electrochemical Atomic Layer Epitaxy, J. Electrochem. Soc., 138(5) (1991) 1279-1284. [45] S. R Brankovic, J. X. Wang, and R. R. Adzic, New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level, J. Serb. Chem. Soc., 66 (2001) 887-898. [46] S. R. Branlovic, J. X. Wang, and R. R. Adzic, Metal monlayer deposition by replacement of metal adlayers on electrode surfaces, Surf. Sci., 474 (2001) L173-L179. [47] M. Modibedi, Crystalline Thin Films:The Electrochemical Atomic Layer Deposition (ECALD) view, CSIR, (2011). [48] M. Christine, Electrochemical atomic layer deposition (EC-ALD) of semiconducting materials, Phys. Chem. & Biophy., (2017). [49] D. Gokcen, S. E. Bae, and S. R. Brankovic, Kinetics of metal deposition via surface limited redox replacement reaction, ECS Trans., 35(21) (2011) 11-22. [50] Q. Rayée, T. Doneux, and C. B. Herman, Underpotential deposition of silver on gold from deep eutectic electrolytes, Electrochim. Acta., 237 (2017) 127-132. [51] D. Banga, N. Jarayaju, L. Sheridan, Y. G. Kim, B. Perdue, X. Zhang, Q. Zhang, and J. Stickney, Electrodeposition of CuInSe2 (CIS) via electrochemical atomic layer deposition (E-ALD), Langmuir, 28 (2012) 3024-3031. [52] J. Nutariya, E. Kuroiwa, D. Takimoto, Z. Shen, D. Mochizuki, and W. Sugimoto, Model Electrode Study of Ru@Pt Core-Shell Nanosheet Catalysts:Pure two-dimensional growth via surface limited redox replacement, Electrochim. Acta., 283 (2018) 826-833. [53] L. B. Sheridan, D. K. Gebregziabiher, J. L. Stickney, and D. B. Robinson, Formation of Palladium Nanofilms Using Electrochemical Atomic Layer Deposition (E-ALD) with Chloride Complexation, Langmuir, 29(5) (2013) 1592-1600. [54] N. Jayaraju, D. Banga, C. Thambidurai, X. Liang, Y. G. Kim, and J. L. Stickney, PtRu nanofilm formation by electrochemical atomic layer deposition (E-ALD), Langmuir, 30 (2014) 3254-3263. [55] X. Liang, Q. Zhang, M. D. Lay, and J. L. Stickney, Growth of Ge Nanofilms Using Electrochemical Atomic Layer Deposition, with a “Bait and Switch” Surface-Limited Reaction, American Chem. Soc., 133(21) (2011) 8199-8204. [56] L. B. Sheridan, J. Czerwiniski, N. Jayaraju, D. K. Gebregziabiher, J. L. Stickney, D. B. Robinson, and M. P. Soriaga, Electrochemical Atomic Layer Deposition (E-ALD) of Palladium Nanofilms by Surface Limited Redox Replacement (SLRR) with EDTA Complexation, Electrocatalysis, 3 (2012) 96-107. [57] P. Sebastián, E. Gómez, V. Climent, and Juan M. Feliu, Copper underpotential deposition at gold surfaces in contact with a deep eutectic solvent:New insights, Electrochem. Commun., 78 (2017) 51-55. [58] J. S. Fang, J. H. Chen, G. S. Chen, Y. L. Cheng, and T. S. Chin, Direct, sequential growth of copper film on TaN/Ta barrier substrates by alternation of Pb-UPD and Cu-SLRR, Electrochim. Acta., 206 (2016) 45-51. [59] J. S. Fang, Y. S. Liu, and T. S. Chin, Atomic layer deposition of copper and copper silver films using an electrochemical process, Thin Solid Films, 580 (2015) 1-5. [60] J. S. Fang, S. L. Sun, Y. L. Cheng, G. S. Chen, and T. S. Chin, Cu and Cu(Mn) films deposited layer-by-layer via surface-limitedredox replacement and underpotential deposition, Appl. Surf. Sci., 364 (2016) 358-364. [61] J. S. Fang, Y. F. Sie, Y. L. Cheng, and G. S. Chen, A New Alternative Electrochemical Process for a Pre-Deposited UPD-Mn Mediated the Growth of Cu(Mn) Film by Controlling the Time during the Cu-SLRR, Coatings, 10(2) (2020) 164-177. [62] K. Venkatraman, R. Gusley, L. Yu, Y. Dordi, and R. Akolkar, Electrochemical Atomic Layer Deposition of Copper:A Lead-Free Process Mediated by Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 163 (2016) D3008-D3013. [63] D. O. Banga, R. Vaidyanathan, L. Xuehai, J. L. Stickney, S. Cox, and U. Happeck, “Formation of PbTe nanofilms by electrochemical atomic layer deposition (ALD)”, Electrochim. Acta., 53(23) (2008) 6988-6994. [64] C. Thambidurai, D. K. Gebregziabiher, X. Liang, Q. Zhang, V. Ivanova, P. H. Haumesser, and J. L. Stickney, E-ALD of Cu Nanofilms on Ru/Ta Wafers Using Surface Limited Redox Replacement, J. Electrochem. Soc., 157(8) (2010) D466-D471. [65] K. Venkatraman, A. Joi, Y. Dordi, R. Akolkar, Electroless atomic layer deposition of copper, Electrochem. Commun., 91 (2018) 45-48. [66] R. E. Rettew, J. W. Guthrie, and F. M. Alamgir, Layer-by-Layer Pt Growth on Polycrystalline Au:Surface-Limited Redox Replacement of Overpotentially Deposited Ni Monolayers, J. Electrochem. Soc., 156 (2009) D513-D516. [67] K. Venkatraman, Y. Dordi, and R. Akolkar, Electrochemical Atomic Layer Deposition of Cobalt Enabled by the Surface-Limited Redox Replacement of Underpotentially Deposited Zinc, J. Electrochem. Soc., 164(2) (2017) D104-D109. [68] M. K. Amini, Carbon paper supported Pt/Au catalysts prepared via Cu underpotential deposition-redox replacement and investigation of their electrocatalytic activity for methanol oxidation and oxygen reduction reactions, Hydrogen Energy, 35(19) (2010) 10527-10538. [69] D. M. Kolb, M. Przasnyski, and H. Gerischer, Underpotential deposition of metals and work function differences, Electroanal. Chem., 54 (1974) 25-38. [70] C. K. Chung, W. T. Chang, and M. W. Liao, On work function and characteristics of anomalous electrodeposited nickel-cobalt films, Thin Solid Films, 519(7) (2011) 2075-2078. [71] Analytical Chemistry, Working Electrodes types, retrieved from https://reurl.cc/qg5ajD. [72] H. B. Yoav, R. O. Almog, Y. Sverdlov, M. Sternheim, S. Belkin, A. Freeman, and Y. S. Diamand, Modified working electrodes for electrochemical whole-cell microchips, Electrochim. Acta, 82, 109 (2012) 109-114. [73] J. Li, F. Gao, E. Shangguan, and Q. Li, The influencing mechanism of acidity on the oxidation peak currents of guanine and uric acid:hydrogen bond catalysis and degree of auxiliary electrode reduction reaction, Electrochim. Acta., 136 (2014) 377-384. [74] Department of Chemical Engineering and Biotechnology, University of Cambridge, Teaching Notes:Electrochemistry Fundamentals, retrieved from http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching notes. [75] A. J. Bard, and L. R. Faulkner, Electrochemical Methods Fundamentals and Applications 2nd, John Wiley & Sons, Inc., (2001). [76] M. Morisue, Y. Fukunaka, E. Kusaka, R. Ishii, and K. Kuribayashi, Effect of gravitational strength on nucleation phenomena of electrodeposited copper onto a TiN substrate, J. Electroanal. Chem. 559 (2003) 155-163. [77] A.J. Bard, and L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd, John Wiley & Sons, Inc., (2001). [78] D. Turnbull, and J.C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17(71) (1949) 71-73. [79] W. Lorenz, Oscillographic overvoltage measurements, Z. Electrochem, 58 (1954) 912-918. [80] M. Fleischmann, and H. R. Thirsk, The potentiostatic study of the growth of deposits on electrodes, Electrochim. Acta., 1(2-3) (1959) 146-160. [81] A. Bewick, M. Fleischmann, and H. R. Thirsk, Kinetics of the electrocrystallization of thin films of calomel, Transactions of the Faraday, 58 (1962) 2200-2216. [82] B. Scharifker, and G. Hills, Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 28(7) (1983) 879-889. [83] B. J. Hwang, R. Santhanam, and Y. L. Lin, Nucleation and growth mechanism of electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic graphite, Electrochim. Acta, 46 (2001) 2843-2853. [84] K. P. Gupta, The Co-Ni-Sn (Cobalt-Nickel-Tin) System, J. Phase Equilibria Diffus., 30(6) (2009) 646-650. [85] T. P. Moffat, D. Wheeler, and D. Josel, Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements:Influence of SPS, J. Electrochem. Soc., 151 (2004) C262-C271. [86] B. J. Hinch, C. Koziol, J. P. Toennies, and G. Zhang, Single and double layer growth mechanisms induced by quantum size effects in Pb films deposited on Cu (111), Vacuum, 42(4) (1991) 309-311. [87] B. Rashkova, B. Guel, R. T. P. tzschke, G. Staikov, and W. J. Lorenz, Electrodeposition of Pb on n-Si(111), Electrochimi. Acta, 43(19) (1998) 3021-3028. [88] P. C. T. D. Ajello, M. L. Munford, and A. A. Pasa, Transient equations for multiple nucleation on solid electrodes:a stochastic description, J. Chem. Phys., 111(9) (1999) 4267-4272. [89] G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker, Electrochemical nucleation:Part I general considerations, J. Electroanal. Chem., 138 (1982) 225-239. [90] D. Grujicic, and B. Pesic, Electrodeposition of copper:the nucleation mechanisms, Electrochim. Acta, 47(18) (2002) 2901-2912. [91] D Grujicic, and B Pesic, Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon, Electrochim. Acta, 50(22) (2005) 4426-4443. [92] O. Renault, A Garnier, J Morin, and N Gambacorti, High-resolution XPS spectromicroscopy study of micro-patterned gold-tin surfaces, Appl. Surf. Sci., 258(24) (2012) 10077-10083. [93] M. Gu, L. Huang, F. Z. Yang, S. B. Yao, and S. M. Zhou, Influence of chloride and PEG on electrochemical nucleation of copper, Int. J. Sur. Engineering and Coatings, 80(6) (2002) 183-186. [94] J. B. Hiskey, and Y. Maeda, A study of copper deposition in the presence of Group-15 elements by cyclic voltammetry and Auger-electron spectroscopy, J. Appl. Chem., 33 (2003) 393-401. [95] H. Kockar, M. Alper, T. Sahin, and O. Karaagac, Role of electrolyte pH on structural and magnetic properties of Co-Fe films, J. Mag. Mag. Mater., 322(9-12) (2010) 1095-1097. [96] L. Tian, J. Xu, and S. Xiao, The influence of pH and bath composition on properties of Ni-Co coatings synthesized by electrodeposition, Vacuum, 86 (2011) 27-33. [97] A. Franczak, A. Levesque, F. Bohr, J. Douglade, and J. P. Chopart, Structural and morphological modifications of Co-thin films caused by magnetic field and pH variation, Appl. Surf. Sci., 258 (2012) 8683-8688. [98] R. A. J. Critelli, P. T. A. Sumodjo, M. Bertotti, and R. M. Torresi, Influence of glycine on Co electrodeposition:IR spectroscopy and near-surface pH investigations, Electrochim. Atca, 260 (2018) 762-771. [99] M. A. Rigsby, L. J. Brogan, N. V. Doubina, Y. Liu, E. C. Opocensky, T. A. Spurlin, J. Zhou, and J. D. Reid, The Critical Role of pH Gradient Formation in Driving Superconformal Cobalt Deposition, J. Electrochem. Soc., 166 (2019) D3167-D3174. [100] I. Stankeviciene, A. Jaminiene, L. T. Tamasaiunaite, Z. Sukackiene, M Gedvilas, and E. Norkus, Investigation of electroless deposition of cobalt films by EQCM in the presence of different amines, Mater. Sci. Eng. B, 241 (2019) 9-12. [101] C. Yang, B. Jiang, Z. Liu, J. Hao, and L. Feng, Structure and properties of Ti films deposited by DC magnetron sputtering, pulsed DC magnetron sputtering and cathodic arc evaporation, Surf. Coat. Technol., 304 (2016) 51-56. [102] W. Kozlowski, J. Balcerski, W. Szmaja, I. Piwonski, D. Batory, E. Miekos, and M. Cichomski, Investigation of nanocrystalline thin cobalt films thermally evaporated on Si (100) substrates, J. Magn. Magn. Mater., 426 (2017) 107-113. [103] 張勁燕,半導體製程設備,五南圖書出版有限公司,第九章,2009,359。 [104] W. Z. Xu, J. X. Wang, H. S. Lu, X. Zeng, J. B. Xu, and X. P. Qu, Direct copper electrodeposition onto cobalt adhesion layer in alkaline bath, IEEE, (2012) 1-3. [105] Z. H. Zheng, P. Fan, G. X. Liang, and D. P. Zhang, Influence of deposition temperature on the microstructure and thermoelectric properties of antimonide cobalt thin films prepared by ion beam sputtering deposition, J. Alloys Comp., 619 (2015) 676-680. [106] J. H. Ting, S. H. Shiau, Y. J. Chen, F. M. Pan, H. Wong, Gibson M. Pu, and C. Y. Kung, Preparation and properties of sputtered nitrogen-doped cobalt silicide film, Thin Solid Films, 468(1-2) (2004) 155-160. [107] R. Walia, J. C. Pivin, A. K. Chawla, R. Jayaganthan, and R. Chandra, Structural and magnetic properties of sputter deposited cobalt-silica nanocomposite thin films, J. Alloys Comp., 509(6) (2011) L103-L108. [108] N. Pandey, M. Gupta, R. Gupta, S. Chakravarty, N. Shukla, and A. Devishvili, Structural and magnetic properties of Co-N thin films deposited using magnetron sputtering at 523 K, J. Alloys Comp., 694 (2017) 1209-1213. [109] D. Panda, A. Dhar, and S. K. Ray, Characteristics of DC magnetron sputtered ternary cobalt-nickel silicide thin films for ultra shallow junction devices, Microelectro. Eng., 85(3) (2008) 559-565. [110] S. Thanikaikarasan, R. Kanimozhi, M. Saravannan, and R. Perumal, Electrochemical deposition and characterization of CoNi alloy thin films, Materials Today:Proceedings, (2021) 1-4. [111] S. De, W. D. Sides, T. Brusuelas, and Q. Huang, Electrodeposition of superconducting rhenium-cobalt alloys from water-in-salt electrolytes, J. Electroanal. Chem., 860, (2020), 113889-113899. [112] A. M. Kwiecińska, D. Kutyła, K. K. Siedlecka, K. Skibińska, P. Żabiński, and R. Kowalik, Electrochemical analysis of co-deposition cobalt and selenium, J. Electroanal. Chem., 848 (2019) 113278-113286. [113] K. Venkatraman, R. Gusley, A. Lesak, and R. Akolkara, Electrochemistry-enabled atomic layer deposition of copper:Investigation of the deposit growth rate and roughness, Vacuum Sci. & Technol. A, 37 (2019) 020901-020907. [114] A. Joi, K. Venkatraman, K. C. Tso, and R. Akolkar, Interface Engineering Strategy Utilizing Electrochemical ALD of Cu-Zn for Enabling Metallization of Sub-10 nm Semiconductor Device Nodes, ECS J. Solid State Sci. Technol., 8(9) (2019) 516-521. [115] D. Wu, D. J. Solanki, A. Joi, Y. Dordi, N. Dole, D. Litvnov, and S. R. Brankovic, Pb Monolayer Mediated Thin Film Growth of Cu and Co:Exploring Different Concepts, J. Electrochem. Soc., 166(1) (2019) D3013-D3021. [116] J. Dornhof, G. Urban, and J. Kieninger, Deposition of Copper Nanofilms by Surface-Limited Redox Replacement of Underpotentially Deposited Lead on Polycrystalline Gold, J. Electrochem. Soc., 166 (2019) D3001-D3005. [117] J. S. Santos, R. Matos, F. T. Strixino, and E. C. Pereira, Effect of temperature on Co electrodeposition in the presence of boric acid, Electrochim. Acta, 53(2) (2007) 644-649. [118] H. Gao, J. Zang, X. Liu, Y. Wang, P. Tian, S. Zhou, S. Song, P. Chena, and W. Li, Ruthenium and cobalt bimetal encapsulated in nitrogen-doped carbon material derived of ZIF-67 as enhanced hydrogen evolution electrocatalyst, Appl. Surf. Sci., 494 (2019) 101-110. [119] L. T. Julián, M. C. Rubén, B. D. Lourdes, S. C. Karuturi, M. Martinelli, D. C. Cronauer, A. J. Kropf, C. L. Marshall, and G. Jacobs, The Preparation and Characterization of Co-Ni Nanoparticles and the Testing of a Heterogenized Co-Ni/Alumina Catalyst for CO Hydrogenation, Catalysts, 10 (2020) 18-46. [120] X. Zhou, Y. Wang, Z. Liang, and H. Jin, Electrochemical Deposition and Nucleation/Growth Mechanism of Ni-Co-Y2O3 Multiple Coatings, Materials, 11 (2018) 1124-1137. [121] Y. Hu, T. Lyons, and Q. Huang, Influence of Furil Dioxime on Cobalt Electrochemical Nucleation and Growth, J. Electrochem. Soc., 167 (2020) 022509-022519. [122] W. Li, J. Hao. (Ph. D.), S. Mu, and W. Liu, Electrochemical behavior and electrodeposition of Ni-Co alloy from choline chloride-ethylene glycol deep eutectic solvent, Appl. Surf. Sci., 507 (2020) 144889-144899. [123] P. P. Manuel, G. Ignacio, A. B. Soto, and E. M. Arce, Influence of the coordination sphere on the mechanism of cobalt nucleation onto glassy carbon, J. Electroanal. Chem., 443(1) (1998) 125-136. [124] Y. P. Lin, and J. R. Selman, Electrodeposition of Ni-Zn Alloy:II. Electrocrystallization of Zn, Ni, and Ni-Zn alloy, J. Electrochem. Soc., 140(5) (1993) 1304-1310. [125] R. Böttcher, A. Ispas, and A. Bund, Determination of transport parameters in [EMIm]Cl- based Ionic Liquids-Diffusion and electrical conductivity, Electrochim. Acta., 366 (2021) 137370-137391. [126] P. P. Manuel, B.R. Scharifker, E.M. Arce, and M. R. Romo, Nucleation and diffusion-controlled growth of electroactive centers:Reduction of protons during cobalt electrodeposition, Electrochim. Acta., 50(24) (2005) 4736-4745. [127] L. H. M. Huizar, J. Robles, and M. P. Pardave, Nucleation and growth of cobalt onto different substrates Part I. Underpotential deposition onto a gold electrode, J. Electroanal. Chem., 521 (2002) 95-106. [128] T. Kadoguchi, K. Gotou, K. Yamanaka, S. Nagao, and K. Suganuma, Electromigration behavior in Cu/Ni-P/Sn-Cu based joint system with lowcurrent density, Microelectro. Reliab., 55(12), Part A (2015) 2554-2559. [129] L. Y. Gao, H. Zhang, C. F. Li, J. d. Guo, and Z. Q. Liu, Mechanism of improved electromigration reliability using Fe-Ni UBM in wafer level package, Mater. Sci. Technol., 34(8) (2018) 1305-1314.
|