資料載入處理中...
跳到主要內容
臺灣博碩士論文加值系統
English
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
功能切換導覽列
訪客IP:216.73.216.236
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
:::
詳目顯示
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
外文摘要
目次
參考文獻
電子全文
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
林壽山
研究生(外文):
LIN, SHOU-SHAN
論文名稱:
應用雙層基因演算法於製造工廠餘物料運輸優化設計之研究
論文名稱(外文):
Research on By-Product Transporting Optimal Design in Manufacturing Factories Based on DLGA
指導教授:
劉東官
指導教授(外文):
LIU, TUNG-KUAN
口試委員:
蔡進聰
、
薛博文
、
何文獻
、
陳朝烈
、
陳彥銘
口試委員(外文):
TSAI, JINN-TSONG
、
HSUEH, PO-WEN
、
HO, WEN-HSIEN
、
CHEN, CHAO-LIEH
、
CHEN, YEN-MING
口試日期:
2020-07-22
學位類別:
博士
校院名稱:
國立高雄科技大學
系所名稱:
工學院工程科技博士班
學門:
工程學門
學類:
綜合工程學類
論文種類:
學術論文
論文出版年:
2020
畢業學年度:
108
語文別:
英文
論文頁數:
121
外文關鍵詞:
By-product
、
Genetic Algorithm
、
AI
相關次數:
被引用:0
點閱:264
評分:
下載:0
書目收藏:1
This study aims to optimize the information logistics (IL) design of a manufacturing execution system that controls the flow of goods in manufacturing factories. Corporate management is faced with the severe challenge of fierce price competition and sharp profit declines due to rising energy costs and supply-demand imbalances, especially in heavy industry and traditional manufacturing industries. Important decisions in the industrial world rely on expert experience and existing knowledge, which can lead to the waste of logistics costs in the absence of systematic thinking and technical application. Therefore, in this study, the AI Genetic Algorithm was applied to the informatization of the logistics mode and the manufacturing execution system (MES) of a manufacturing factory (Company A) in order to improve the accuracy of the factory logistics and accurately dispatch the existing production resources, thus reducing excess costs and optimizing the logistics supply end. In addition, the AI Genetic Algorithm was applied in by-product transporting and logistics optimization research in a steel factory (Company C) with the expectation of solving the bottlenecks of traditional decision-making and to optimize transporting logistics decisions based on AI. In the problem formulation, considering the path information, the vehicle path systemization, and the transporting demand frequency in the factory, a model for by-product transporting and logistics in the steel factory was established. The improved variable-length chromosome termination technique and the Dual-Layer Genetic Algorithm were proposed to effectively solve the problem of transporting in different zones. The experimental results showed that the zoning result obtained by this method had a slightly shorter total transporting time than the existing expert-based task scheduling but had far better fairness. In addition, the decision generation speed of this method was tens of minutes, which represented a marked improvement compared to the decision generation speed in the expert-based task scheduling, which requires days.
1. Introduction 1
1.1 Research Background and Reason 1
1.2 Research Motives and Purposes 7
1.3 Research Scope 11
1.4 Contribution and Organization of this thesis 17
2. Literature Review 19
2.1 Significance of Logistics Management and Literature Review 19
2.1.1 Material management in the manufacturing industry 19
2.1.2 Significance of Logistics management in the manufacturing industry 20
2.1.3 Logistics informatization of the manufacturing industry 21
2.1.4 Manufacturing Execution System (MES) 25
2.2. Operation Mode of Logistics Zoning Planning 27
2.3 Flexible Job Shop Scheduling Problem 28
2.4 Establishment of Cloud Server Database 28
2.5 Intelligent Mobile Devices 29
2.6 Establishment of QR Code 30
2.7 QR Code Generator 32
3. Research Method 36
3.1 Problem Formulation and Restrictions 36
3.1.1 Problem Formulation 36
3.1.2 Operation Reporting System 38
3.1.3 Process Production Card System 41
3.2 Import of MES 42
3.3 Proposed Double-Layer Genetic Algorithms (DLGA) 43
3.4 Make recommendations DLGA 44
3.5 DLGA based on Checkerboard Chromosome with foamed gene 45
3.6 Optimal Design Process of DLGA 49
3.7 Optimal Analysis and Result Discussion 52
3.8 Compare the Difference between Zoning Planning and DLGA 55
3.9 Results of six Districts in case study 60
3.10 DLGA Planning Pareto Solution 64
4. Case Discussion and Analysis 66
4.1. Optimization of Material Transporting Method in the Manufacturing Factory
4.1.1 Analysis of Manual Operation Situation 66
4.1.2 Determination of Material coding and Movement 67
4.1.3 Material Transporting Method 69
4.1.4 Filing of Production Schedule 76
4.1.5 Analysis of Traditional Manual Operation Situation 76
4.1.6 Code Format and Coding Design of the Material 77
4.1.7 AI-based QR code Description and Data reading 78
4.1.8 Optimization Analysis and Results of Material Transporting Method (WIP) of the Case Company 79
4.2 Optimal Design for Transport 84
4.3 Comparison between Manual Partition and DLGA Solution. 84
4.4 Analysis of Results from one to six Zones of Case Companies 93
5. Conclusion and Future Work 104
5.1 Conclusion and Suggestions 104
5.2 Future Work 105
6 References 107
1. www.cw.com.tw /Articles in the Common Wealth Magazine No 542
2. https://www.nuenergy.org:*2-1 ; https://www.123rf.com/ :*2-2
3. Flood MM. The traveling-salesman problem. Oper Res 1956; 4: 225–330.
4. Applegate DL, Bixby RE, Chva´ tal V, et al. The traveling salesman problem. Princeton, NJ: Princeton University Press, 2007.
5. Toth P and Vigo D. Vehicle routing: Problems, methods, and applications. Philadelphia, PA: SIAM Publications, 2014.
6. Bodin L et al. Routing and scheduling of vehicle and crew: the state of art. Comput Oper Res (Special Issue) 1983; 10: 63–211.
7. Gendreau M, et al. Vehicle routing: problems, methods, and applications, stochastic vehicle routing problems, Chapter 8. Mathematical Optimization Society, Philadelphia, 2014, pp. 213–240.
8. Cattaruzza D, et al. A Memetic Algorithm for the multi trip vehicle routing problem. Eur J Oper Res 2014; 833–848.
9. Ongarj L and Ongkunaruk P. An integer programming for a bin packing problem with time windows a case study of a Thai Seasoning Company. In: 10th International conference on service systems and service management, Piscataway, NJ: IEEE. pp.826–830.
10. Popovi_c DM, et al. Fixed and flexible zoning strategies for parcel distribution in uncertainty environments. Transp Logist 2013; 13: 1–8.
11. Crainic TG, et al. Multi-zone multi-trip VRP with time windows. Inf Syst Oper Res 2015; 53: 49–67.
12. Lu J and Yang D. Path planning based on double-layer Genetic Algorithm. In: IEEE 3rd international conference on natural computation, Haikou, China, 24–27 August 2007.
13. Sikora R and Shaw M. A double-layered learning approach to acquiring rules for classification: Integrating Genetic Algorithms with similarity-based learning. J Comput 1994; 6: 107–220.
14. Dobric G and Durisic Z. Double-stage Genetic Algorithm for wind farm layout optimization on complex terrains. J Renew Sustain Energy 2014; 6: 1–12.
15. Sungur I. The robust vehicle routing problem. PhD Dissertation, Faculty of The Graduate School University of Southern California, USA.
16. https://zh.wikipedia.org/wiki/ Storage capacity and maximum data capacity of QR codes。
17. https://zh.wikipedia.org/wiki/QFault tolerance of QR。
18. http://www.calm9.com/labs/qrcode:QR Code Generator
19. Wei-Hong Chen CPS Integrates Production Management System for Semi-Automatic Process - A Case Study on Lost Wax Casting Factory. National Kaohsiung University of Science and Technology.
20. Kim YI and Weck OD. Variable chromosome length Genetic Algorithm for structural topology design optimization. In: 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, Palm Springs, CA, 19–22 April 2004.
21. His-I Hsieh Study on Application of Genetic Algorithms to Optimization of Steel Mill Factory By-product Transport and Logistics. National Kaohsiung First University of Science and Technology in Partial Fulfillment of the Requirements.
電子全文
(
網際網路公開日期:20250817
)
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
推文
推文
推文到facebook
推文到plurk
推文到twitter
Google bookmarks
myshare
reddit
netvibes
top
相關論文
相關期刊
熱門點閱論文
1.
遺傳演算法於股市擇時策略之研究
2.
應用基因演算法於鋼廠內副產物運輸物流之最佳化研究
無相關期刊
1.
應用AI暨機器視覺技術於生產效能提升之研究
2.
整合人機協同排程最佳化與虛擬輸送帶式管理模式的智慧型生產管理系統 在脫蠟鑄造生產中的應用
3.
以實體導向的虛實整合生產管理系統研究
4.
附有輔助站立功能與追蹤人類移動機器人之開發
5.
以 Rapidminer 建構 ARIMA 時間序列預測與使用 B-Band 分析之投資效益比較-以加權股價指數為例
6.
基於深度學習之視線輸入介面研究
7.
應用即時生產管理系統技術於智慧製造—以精密脫蠟鑄造業為例
8.
應用均勻設計類神經基因遺傳演算法與田口基因演算法於最佳化設計
9.
基於虛實整合影像辨識技術之智慧型雲端生產管理系統研究
10.
積層陶瓷電容介電層厚度標準差最佳化之研究-以Y公司為例
11.
整合物聯網與報工系統之智慧型生產管理技術研發
12.
具UAV追瞄與座標定位之旋轉載台的反無人機系統研究
13.
牙科植體材料和表面改質技術及雷射殺菌效果之研究
14.
應用均勻類神經基因演算法於自動追跡最佳化控制
15.
應用基因演算法於鋼廠內副產物運輸物流之最佳化研究
簡易查詢
|
進階查詢
|