|
1. 行政院農業部漁產品全球資訊網,111年12月。https://m.coa.gov.tw/?status=fish 2. 沈士新、鄭安倉、劉秉忠、林正輝、冉繁華,2014。水產養殖生技,農業生技產業季刊,NO.38。 3. 周瑞良,科學發展, 2012年5月,473期p38-43。 4. 吳春榮、王志強、劉德軍,2013。中國飼料科學p63-67。 5.Alexis, M. N., & Nengas, I. (2001). Current state of knowledge concerning the use of soy products in diets for feeding sea bass and sea bream needs for future research (p. 32). Luxembourg, Brussels: American Soybean Association. 6. Anderson JL. The future of aquaculture and its role in the global food system. In: Evers SJ, Shriver AL, editors. Proceedings of the Eighteenth Biennial Conference of the International Institute Fisheries Economics Trade; 2016 July 11–15; Aberdeen, Scotland, UK. 2016. 7. Adeshina, I., & Abdel-Tawwab, M. (2020). Dietary taurine incorporation to high plant protein-based diets improved growth, biochemical, immunity, and antioxidants biomarkers of African catfish, Clarias gariepinus (B.). Fish physiology and biochemistry, 46, 1323-1335. 8. Al‐Feky, S. S. A., El‐Sayed, A. F., & Ezzat, A. A. (2016). Dietary taurine enhances growth and feed utilization in larval N ile tilapia (O reochromis niloticus) fed soybean meal‐based diets. Aquaculture Nutrition, 22(2), 457-464. 9. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. 10. Carr, W. E., Netherton, III, J. C., Gleeson, R. A., & Derby, C. D. (1996). Stimulants of feeding behavior in fish: analyses of tissues of diverse marine organisms. The biological bulletin, 190(2), 149-160. 11. Cunnane, S. C., & Brosnan, J. T. (2002). Taurine: a multifunctional amine. Nutrition Reviews, 60, 249-266. 12. Chu, Z. J., Gong, Y., Lin, Y. C., Yuan, Y. C., Cai, W. J., Gong, S. Y., & Luo, Z. (2014). Optimal dietary methionine requirement of juvenile C hinese sucker, M yxocyprinus asiaticus. Aquaculture Nutrition, 20(3), 253-264. 13. Di Mauro, S., & Bonetti, A. (2007). Taurine: from basic research to clinical applications. Neuroscience, 150, 77-100. 14. Elango, R. (2020). Methionine nutrition and metabolism: insights from animal studies to inform human nutrition. The Journal of Nutrition, 150(Supplement_1), 2518S-2523S. 15. FAO. The State of World Fisheries and Aquaculture.(SOFIA), 2022.Part 1, p3-5. 16. Food and Agriculture Organization of the United Nations. The state of world fisheries and aquaculture 2016. 2016. Available from: http://www.fao.org/3/a-i5555e.pdf. 17. Francis, G., Makkar, H. P., & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4), 197-227. 18. Francis, G., Makkar, H. P., & Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199(3-4), 197-227. 19. Floreto, E. A., Bayer, R. C., & Brown, P. B. (2000). The effects of soybean-based diets, with and without amino acid supplementation, on growth and biochemical composition of juvenile American lobster, Homarus americanus. Aquaculture, 189(3-4), 211-235. 20. Gatlin III, D. M., Barrows, F. T., Brown, P., Dabrowski, K., Gaylord, T. G., Hardy, R. W., & Wurtele, E. 2007. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquaculture research, 38(6), 551-579. 21. García-Ortega, A., Kissinger, K. R., & Trushenski, J. T. (2016). Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture, 452, 1-8. 22. Gaylord, T. G., Teague, A. M., & Barrows, F. T. (2006). Taurine supplementation of all‐plant protein diets for rainbow trout (Oncorhynchus mykiss). Journal of the World Aquaculture Society, 37(4), 509-517. 23. Gaon, A., Nixon, O., Tandler, A., Falcon, J., Besseau, L., Escande, M.,& Koven, W. (2021). Dietary taurine improves vision in different age gilthead sea bream (Sparus aurata) larvae potentially contributing to increased prey hunting success and growth. Aquaculture, 533, 736129. 24. Hossain, M. S., Small, B. C., Kumar, V., & Hardy, R. (2023). Utilization of functional feed additives to produce cost‐effective, ecofriendly aquafeeds high in plant‐based ingredients. Reviews i 25. Hossain, M. S., & Koshio, S. (2017). Dietary substitution of fishmeal by alternative protein with guanosine monophosphate supplementation influences growth, digestibility, blood chemistry profile, immunity, and stress resistance of red sea bream, Pagrus major. Fish physiology and biochemistry, 43, 1629-1644. 26. Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A., & Strugnell, J. M. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329. 27. Huang, M., Yang, X., Zhou, Y., Ge, J., Davis, D. A., Dong, Y.,& Dong, S. (2021). Growth, serum biochemical parameters, salinity tolerance and antioxidant enzyme activity of rainbow trout (Oncorhynchus mykiss) in response to dietary taurine levels. Marine Life Science & Technology, 1-14. 28. Horwitz, W. (1975). Official methods of analysis (Vol. 222). Washington, DC: Association of Official Analytical Chemists. 29. Hua, K., Cobcroft, J. M., Cole, A., Condon, K., Jerry, D. R., Mangott, A.,& Strugnell, J. M. (2019). The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth, 1(3), 316-329. 30. Jacobsen, J. G., & Smith, L. H. (1968). Biochemistry and physiology of taurine and taurine derivatives. Physiological reviews, 48(2), 424-511. 31.Kissil, G. W., Lupatsch, I., Higgs, D. A., & Hardy, R. W. (2000). Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata L. Aquaculture research, 31(7), 595-601. 32. Kousoulaki, K., Sæther, B. S., Albrektsen, S., & Noble, C. (2015). Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: a practical guide for optimizing feed formulation and farming protocols. Aquaculture Nutrition, 21(2), 129-151. 33. Krogdahl, Å., Penn, M., Thorsen, J., Refstie, S., & Bakke, A. M. (2010). Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquaculture research, 41(3), 333-344. El-Sayed, A. F. M. (1999). Alternative dietary protein sources for farmed tilapia, 34. Kuzmina, V. V., Gavrovskaya, L. K., & Ryzhova, O. V. (2010). Taurine. Effect on exotrophia and metabolism in mammals and fish. Journal of Evolutionary Biochemistry and Physiology, 46, 19-27. 32. Koven, W., et al., Taurine improves the performance of white grouper juveniles (Epinephelus Aeneus) fed a reduced fish meal diet. Aquaculture, 2016. 460: p. 8-14. 35.Li, P., Mai, K., Trushenski, J., & Wu, G. (2009). New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino acids, 37, 43-53. 36. Li, Y., Wang, X., & Zhang, Y. (2020). Effect of heavy metal content in fishmeal on growth performance and nutrient utilization of broiler chickens. Animal Feed Science and Technology, 267, 1-9. 37. Lambert, I. H., Kristensen, D. M., Holm, J. B., & Mortensen, O. H. (2015). Physiological role of taurine–from organism to organelle. Acta Physiologica, 213(1), 191-212. 38. Nunes, A. J., Sá, M. V., Browdy, C. L., & Vazquez-Anon, M. (2014). Practical supplementation of shrimp and fish feeds with crystalline amino acids. Aquaculture, 431, 20-27. 39. Park, G. S., Takeuchi, T., Yokoyama, M., & Seikai, T. (2002). Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fisheries science, 68(4), 824-829. 40. Qian, J., et al., Effects of taurine supplementation in a high-carbohydrate diet on growth performance, plasma biochemical, digestive and glucose metabolism enzymes in hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatus). Aquaculture Reports, 2021. 21: p. 100820. 41. Storebakken, T., Shearer, K. D., Baeverfjord, G., Nielsen, B. G., Åsgård, T., Scott, T., & De Laporte, A. (2000). Digestibility of macronutrients, energy and amino acids, absorption of elements and absence of intestinal enteritis in Atlantic salmon, Salmo salar, fed diets with wheat gluten. Aquaculture, 184(1-2), 115-132. 42. Schuller‐Levis, G., & Park, E. (2006). Is taurine a biomarker?. Advances in Clinical Chemistry, 41, 1-21. 43. Spitze, A. R., Wong, D. L., Rogers, Q. R., & Fascetti, A. J. (2003). Taurine concentrations in animal feed ingredients; cooking influences taurine content. Journal of Animal Physiology and Animal Nutrition, 87(7‐8), 251-262. 44.Sampath, W. W. H. A., Rathnayake, R. M. D. S., Yang, M., Zhang, W., & Mai, K. (2020). Roles of dietary taurine in fish nutrition. Marine Life Science & Technology, 2(4), 360-375. 45. Teves J F C, Ragaza J A. The quest for indigenous aquafeed ingredients: a review. Reviews in Aquaculture, 2016, 8(2):154–171. View ArticleGoogle Scholar 46. Tacon AGL, Hasan MR, Metian M. Use of fishery resources as feed inputs for aquaculture development: trends and policy implications. Rome: FAO Fisheries Circular; 2006. 47. Tacon AGL, Hasan MR, Metian M. Demand and supply of feed ingredients for farmed fish and crustaceans: Trends and prospects. Rome: FAO Fisheries and Aquaculture Technical Paper; 2011. Issue: 564, pp. I,III,IV,VIII,IX,X,XI,XII,1–69,71–87. 48. Tacon AGJ, Metian M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture. 2008;285(1–4):146–58. View ArticleGoogle Scholar 49. Wu, C., Wang, Z., & Liu, D. (2016). Effect of fishmeal digestibility on protein utilization in broiler chickens. Journal of Animal Science, 94, 2485-2492. 50. Wang, Z., Liu, D., & Wu, C. (2018). Effect of fishmeal fat content on storage stability of fishmeal. Journal of the Science of Food and Agriculture, 98, 562-567. 51. Wright, C. E., & Gaull, G. E. (1988). Role of taurine in brain development and vision. In Amino Acid Availability and Brain Function in Health and Disease (pp. 457-464). Berlin, Heidelberg: Springer Berlin Heidelberg. 52. Wang, L., Liu, Y., & Lu, Y. (2017). Taurine and its neuroprotective effects. Nutritional Neuroscience, 20, 241-251. 53. Wang, W., Yang, P., He, C., Chi, S., Li, S., Mai, K., & Song, F. (2021). Effects of dietary methionine on growth performance and metabolism through modulating nutrient-related pathways in largemouth bass (Micropterus salmoides). Aquaculture Reports, 20, 100642. 54. Wang, L., Gao, C., Wang, B., Wang, C., Sagada, G., & Yan, Y. (2023). Methionine in fish health and nutrition: Potential mechanisms, affecting factors, and future perspectives. Aquaculture, 739310. 55. Wu, G. (2020). Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino acids, 52(3), 329-360. 56. Wang, X., He, G., Mai, K., Xu, W., & Zhou, H. (2016). Differential regulation of taurine biosynthesis in rainbow trout and Japanese flounder. Scientific reports, 6(1), 21231. 57. Wang, Q., He, G., Wang, X., Mai, K., Xu, W., & Zhou, H. (2014). Dietary sulfur amino acid modulations of taurine biosynthesis in juvenile turbot (Psetta maxima). Aquaculture, 422, 141-145. 58.Yamamoto, T., Akimoto, A., Kishi, S., Unuma, T., & Akiyama, T. (1998). Apparent and true availabilities of amino acids from several protein sources for fingerling rainbow trout, common carp, and red sea bream. Fisheries science, 64(3), 448-458. 59. Yokoyama, M., Takeuchi, T., Park, G. S., & Nakazoe, J. (2001). Hepatic cysteinesulphinate decarboxylase activity in fish. Aquaculture Research, 32, 216-220. 60. Yan, L. C., Feng, L., Jiang, W. D., Wu, P., Liu, Y., Jiang, J., & Kuang, S. Y. (2019). Dietary taurine supplementation to a plant protein source‐based diet improved the growth and intestinal immune function of young grass carp (Ctenopharyngodon idella). Aquaculture Nutrition, 25(4), 873-896. 61. Zhang, X., Zhang, Y., & Wang, Y. (2019). Effect of fishmeal ash content on growth performance and nutrient utilization of broiler chickens. Animal Feed Science and Technology, 255, 1-9. Oreochromis spp. Aquaculture, 179(1-4), 149-168. 62. Zheng, H., Zheng, Y., Zhao, L., Chen, M., Bai, G., Hu, Y.,& Gao, H. (2017). Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1863(1), 266-273.
|