|
[1]M. Yu, S.Stott, M. Toner, S. Maheswaran and D. A. Haber, “Circulating tumor cells: approaches to isolation and characterization”, J Cell Biol, vol. 3, pp. 192, 2011. [2]H. W. Hou, M. E. Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S.-W. Tan, W.-T. Lim, J. Han, A. A. S. Bhagat and C. T. Lim, “Isolation and retrieval of circulating tumor cells using centrifugal forces”, Nature, vol. 3, pp. 1259, 2013. [3]W. S. Low and W. A. B. W. Abas, “Benchtop Technologies for Circulating Tumor Cells Separation Based on Biophysical Properties”, Biomed Res Int, vol. 10, pp. 1155, 2015. [4]B. Mostert, S. Sleijfer, J. A. Foekens, and J. W. Gratama, “Circulating tumor cells (CTCs): Detection methods and their clinical relevance in breast cancer”, Cancer Treat Rev, vol.35, pp. 463-474, 2009. [5]Y. Hu, L. Fan, J. Zheng, R. Cui, W. Liu, Y. He, X. Li, and S. Huang, “Detection of circulating tumor cells in breast cancer patients utilizing multiparameter flow cytometry and assessment of the prognosis of patients in different CTCs levels”, Cytometry A, vol.77, pp. 213-219, 2010. [6]E. Diamond, G. Y. Lee, N. H. Akhtar, B. J. Kirby, P. Giannakakou, S. T. Tagawa, and D. M. Nanus, “Isolation and characterization of circulating tumor cells in prostate cancer”, Frontiers in Oncology, vol. 2, pp. 131, 2012. [7]M. S. Ferry, I. A. Razinkov and J. Hasty, “Microfluidics for synthetic biology: from design to execution”, Methods Enzymol, vol. 497, pp. 295-372, 2011. [8]A. M. Foudeh, T. F. Didar, T. Veres, and M. Tabrizian, “Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics”, Lab on a Chip, vol.18, pp. 3249-3266, 2012. [9]J. Chen, J. Li, Y. Sun, “Microfluidic approaches for cancer cell detection, characterization, and separation”, Lab on a Chip, vol.12, pp.1753, 2012. [10]H. Cho, J. Kim, H. Song, K. Y. Sohn, M. Jeon, and K.-H. Han, “Microfluidic technologies for circulating tumor cell isolation”, Analyst, vol. 13, pp. 2936-2970, 2018. [11]L. Descamps, D. Le Roy, and A.-L. Deman, “Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy”, Int J Mol Sci, vol. 4, pp. 1981, 2022. [12]J. Sierra-Agudelo, R. Rodriguez-Trujillo, and J. Samitier, “Microfluidics for the Isolation and Detection of Circulating Tumor Cells”, Adv Exp Med Biol, vol. 1379, pp. 389-412, 2022. [13]M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, and N. Kim, “Lab on a CD”, Annu Rev Biomed Eng, vol. 10, pp. 1146, 2006. [14]R. Burger, D. Kirby, M. Glynn, C. Nwankire, M. O'Sullivan, J. Siegrist, D. Kinahan, G. Aguirre, G. Kijanka, R. A. Gorkin 3rd, and J. Ducrée, “Centrifugal microfluidics for cell analysis”, Current Opinion in Chemical Biology, vol. 16, pp. 3-4, 2012. [15]A. Lee, J. Park, M. Lim, V. Sunkara, S. Y. Kim, G. H. Kim, M. H. Kim, and Y. K. Cho, “All-in-One Centrifugal Microfluidic Device for Size-Selective Circulating Tumor Cell Isolation with High Purity”, Anal Chem, vol. 86, pp. 11349-11356, 2014. [16]J. Ducrée, S. Haeberle, T. Brenner and T. Glatzel, “Patterning of flow and mixing in rotating radial microchannels”, Microfluidics and Nanofluidics, vol. 2, pp. 97-105, 2006. [17]Z. Cai, J. Xiang, H. Chen, and W. Wang, “A Rapid Micromixer for Centrifugal Microfluidic Platforms”, Micromachines, vol. 5, pp. 89, 2016. [18]A. Shamloo, P. Vatankhah and A. Akbari, “Analyzing mixing quality in a curved centrifugal micromixer through numerical simulation”, Chemical Engineering and Processing: Process Intensification, vol. 116, pp. 9-16, 2017. [19]S. Shen, F. Zhang, M. Gao and Y. Niu, “Concentration Gradient Constructions Using Inertial Microfluidics for Studying Tumor Cell–Drug Interactions”, Micromachines, vol. 11, pp. 493, 2020. [20]D. Kirby, J. Siegrist, G. Kijanka, L. Zavattoni, O. Sheils, J. O’Leary, R. Burger and J. Ducrée, “Centrifugo-magnetophoretic particle separation”, Microfluidics and Nanofluidics, vol.13, pp. 899-908, 2012. [21]A. Kazemzadeh, A. Eriksson, M. Madou, and A. Russom, “A micro-dispenser for long-term storage and controlled release of liquids”, Nature, vol. 10, pp. 189, 2019. [22]P. Ajanth, A. Sudeepthi and A. K. Sen, “Microfluidics Technology for Label-Free Isolation of Circulating Tumor Cells”, Journal of The Institution of Engineers (India): Series C, vol.101, pp. 1051-1071, 2020. [23]V. Omrani, M. Z. Targhi, F. Rahbarizadeh and R. Nosrati, “High-throughput isolation of cancer cells in spiral microchannel by changing the direction, magnitude and location of the maximum velocity”, Nature, vol. 24, pp. 3213, 2023. [24]T. Yeo, S. J. Tan, C. L. Lim, D. P. X. Lau, Y. W. Chua, S. S. Krisna, G. Iyer, G. S. Tan, T. K. H. Lim, D. S. W. Tan, W. T. Lim and C. T. Lim, “Microfluidic enrichment for the single cell analysis of circulating tumor cells”, Nature, vol. 6, pp. 22076, 2016. [25]P. Li, M. Kaslan, S. H. Lee, J. Tan, “Progress in Exosome Isolation Techniques”, Theranostics, vol. 7, pp. 789-804, 2017. [26]C. T. Lin, S. H. Kuo, P. H. Lin, P. H. Chiang, W. H. Lin, C. H. Chang, P. H. Tsou and B. R. Li,“Hand-powered centrifugal microfluidic disc with magnetic chitosan bead-based ELISA for antibody quantitation”, Sensors and Actuators B: Chemical, vol. 316, pp. 128003, 2020. [27]S. Akgönüllü, M. Bakhshpour, A. K. Pişkin,and A. Denizli, “Microfluidic Systems for Cancer Diagnosis and Applications”, Micromachines (Basel), vol. 12, pp. 1349, 2021. [28]J. S. Park, S. H. Song and H. I. Jung,“Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels”, Lab on a Chip, vol. 9, pp. 939-948, 2009. [29]T. S. Sim, K. Kwon, J. C. Park, J. G. Lee and H. I. Jung,“Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels”, Lab on a Chip, vol. 11, pp. 93-99, 2011. [30]M. G. Lee, S. Choi, H. J. Kim and H. K. Lim,“Inertial blood plasma separation in a contraction–expansion array microchannel”, J Chromatogr A, vol. 98, pp. 253702, 2011. [31]M. G. Lee, J. H. Shin, C. Y. Bae, S. Choi and J. K. Park,“Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress”, Anal Chem, vol.85, pp. 6213-6218, 2013. [32]J. Ho, M. G. Lee, S. Choi and J. K. Park,“Inertia-activated cell sorting of immune- specifically labeled cells in a microfluidic device”, RSC Advances, vol. 4, pp. 39140, 2014. [33]D. Yang, S. Leong, A. Lei and L. L. Sohn,“High-Throughput Microfluidic Device for Rare Cell Isolation”, Proc SPIE Int Soc Opt Eng, vol. 4, pp. 9518, 2015. [34]S. Lai, S. Wang, J. Luo, J. Lee, S.T. Yang, and M.J. Madou, “Design of a Compact Disk-like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay, ” Anal Chem, vol. 76, pp. 1832-1837, 2004. [35]J. Siegrist, R. Gorkin, L. Clime, E. Roy, R. Peytavi, H. Kido, M. Bergeron, T. Veres, and M. Madou, “Serial siphon valving for centrifugal microfluidic platforms, ” Microfluidics and Nanofluidics, vol. 9, pp. 55-63, 2009. [36]N. Godino, R. Gorkin, A. V. Linares, R. Burger and J. Ducre´e,“Comprehensive integration of homogeneous bioassaysvia centrifugo-pneumatic cascading”, Lab on a Chip, vol. 13, pp. 685, 2013. [37]W. A. Faqheri, F. Ibrahim, T. H. G. Thio, N. Bahari,“Development of a Passive Liquid Valve (PLV) Utilizing a Pressure Equilibrium Phenomenon on the Centrifugal Microfluidic Platform”, Sensors, vol. 15, pp. 4658-76, 2015. [38]B. S. Kim, B. S. Kwak, S. Shin, S. Lee, K. M. Kim, H. I. Jung and H. H. Cho i,“Optimization of microscale vortex generators in a microchannel using advanced response surface method”, International Journal of Heat and Mass Transfer, vol. 54, pp. 118-125, 2011. [39]A. Afzal and K. Y. Kim,“Passive split and recombination micromixer with convergent–divergent walls”, Chemical Engineering Journal, vol. 203, pp. 182-192, 2012. [40]M. K. Parsa, F. Hormozi and D. Jafari,“Mixing enhancement in a passive micromixer with convergent–divergent sinusoidal microchannels and different ratio of amplitude to wave length”, Computers & Fluids, vol. 10, pp. 82-90, 2014. [41]I. Z. Nishu and M. F. Samad“Modeling and simulation of a split and recombination-based passive micromixer with vortex-generating mixing units”, Heliyon, vol. 9, pp. 14745, 2023. [42]Z. Cai, J. Xiang, and W. Wang,“A pinch-valve for centrifugal microfluidic platforms and its application in sequential valving operation and plasma extraction”, Sensors and Actuators B: Chemical, vol. 221, pp. 257-264, 2015. [43]F. Stumpf, F. Schwemmer, T. Hutzenlaub, D. Baumann, O. Strohmeier, G. Dingemanns, G. Simons, C. Sager, L. Plobner, F. V. Stetten, R. Zengerle, and D. Mark,“LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza A H3N2 virus”, Lab on a Chip, vol. 16, pp. 199-207, 2016. [44]R. Uddin, M. Donolato, E.-T. Hwu, M. F. Hansen, and A. Boisen,“Combined detection of C-reactive protein and PBMC quantification from whole blood in an integrated lab-on-a-disc microfluidic platform”, Sensors and Actuators B: Chemical, vol. 272, pp.634-642, 2018. [45]C. M. Miyazaki, D. J. Kinahan, R. Mishra, F. Mangwanya, N. Kilcawley, M. Ferreira, and J. Ducrée,“Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform”, Biosensors and Bioelectronics, vol. 119, pp. 86-93, 2018. [46]L. Li, B. Miao, Z. Li, Z. Sun, and N. Peng,“Sample-to-Answer Hepatitis B Virus DNA Detection from Whole Blood on a Centrifugal Microfluidic Platform with Double Rotation Axes”, ACS Sens, vol. 4, pp. 2738-2745, 2019. [47]R. Nasiri, A. Shamloo, J. Akbari, P. Tebon, M. R. Dokmeci, and S. Ahadian,“Design and Simulation of an Integrated Centrifugal Microfluidic Device for CTCs Separation and Cell Lysis”, Micromachines, vol. 11, pp. 699, 2020. [48]J. Zhang, J. Ma, Y. Xu, Y. Wu, and M. Miao,“A fully automated Lab-on-a-Disc platform integrated a high-speed triggered siphon valve for PBMCs extraction”, Talanta, vol. 268, pp. 125292, 2024. [49]T. M. Squires and S. R. Quake,“Microfluidics: Fluid physics at the nanoliter scale”, Reviews of Modern Physics, vol. 77, pp. 977, 2005. [50]G. Falkovich, K. Gawȩdzki, and M. Vergassola, “Particles and fields in fluid turbulence”, Reviews of Modern Physics, vol.73, pp. 913, 2001. [51]G. Cai, L. Xue, H. Zhang and J. Lin, “A Review on Micromixers”, Micromachines, vol. 8, pp. 274, 2017. [52]N. Norouzi, H. C. Bhakta and W. H. Grover, “Sorting cells by their density”, PLoS One, vol.10, pp.1371, 2017. [53]G.Késmárky, P. Kenyeres, M. Rábai and K. Tóth, “ Plasma viscosity: a forgotten variable”, Clin Hemorheol Microcirc, vol.39, pp. 243-246, 2008.
|