|
[1]A. Blakers, “Development of the PERC solar cell,” IEEE Journal of Photovoltaics, 2017, pp. 1-7. [2]C. Battaglia, S. M. d. Nicolas, S. D. Wolf, X. Yin, M. Zheng, C. Ballif, and A. Javey, “Silicon heterojunction solar cell with passivated hole selective MoOx contact,” Applied Physics Letters, vol. 104, 2014, pp. 1-5. [3]X. Yang, W. Liu, M. D. Bastiani, T. Allen, J. Kang, H. Xu, E. Aydin, L. Xu, Q. Bi, H. Dang, E. AlHabshi, K. Kotsovos, A. AlSaggaf, I. Gereige, Y. Wan, J. Peng, C. Samundsett, A. Cuevas, and S. D. Wolf, “Dual-function electron-conductive, hole-blocking titanium nitride contacts for efficient silicon solar cells,” Joule, vol. 3, 2019, pp. 1314-1327. [4]W. Liu, X. Yang, J. Kang, S. Li, L. Xu, S Zhang, H. Xu, J. Peng, F. Xie, J. H. Fu, K. Wang, J. Liu, A. Alzahrani, and S. D. Wolf, “Polysilicon passivating contacts for silicon solar cells: interface passivation and carrier transport mechanism,” ACS Applied Energy Materials, vol. 2, 2019, pp. 4609-4617. [5]B. Hoex, J. J. H. Gielis, M. C. M. Sanden, and W. M. M. Kessels, “On the c-Si surface passivation mechanism by the negative-charge dielectric Al2O3,” Journal of Applied Physics, vol. 104, 2008, pp. 1-7. [6]Y. Liua, Y. Lia, Y. Wub, G. Yangc, L. Mazzarellac, P. P. Moyac, A. C. Tambolid, K. Weberb, M. Boccarde, O. Isabellac, X. Yangf, and B. Sun, “High-efficiency silicon heterojunction solar cells: materials, devices and applications,” Materials Science & Engineering R, vol. 142, 2020, pp. 1-41. [7]Y. Liu, J. Zhang, H. Wu, W. Cui, R. Wang, K. Ding, S. T. Lee, and B. Sun, “Low-temperature synthesis TiOx passivation layer for organic-silicon heterojunction solar cell with a high open-circuit voltage,” Nano Energy, vol. 34, 2017, pp. 257-263. [8]M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies,” Advanced Functional Materials, vol. 22, 2012, pp. 4557-4568. [9]M. Bivour, B. Macco, J. Temmler, W. M. M. Kessels, and M. Hermle, “Atomic layer deposited molybdenum oxide for the hole-selective contact of silicon solar cells,” Energy Procedia, vol. 92, 2016, pp. 443-449. [10]M. D. Noce, E. Bobeico, L. Lancellotti, L. V. Mercaldo, I. Usatii, and P. D. Veneri, “MoOx as hole-selective collector in p-type Si heterojunction solar cells,” AIP Conference Proceedings, 2018, pp. 1-6. [11]C. L. Cheng, C. C. Liu, Y. S. Chiu, P. W. Chen, and Z. Y. Liu, “Air ambient and composition effects of molybdenum oxides on photovoltaic and physical characteristics of screen-printed mono-crystalline silicon solar cells,” Materials Letters, vol. 234, 2019, pp. 319-322. [12]J. Dreon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, and M. Boccard, “23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact,” Nano Energy, vol. 70, 2020, pp. 1-7. [13]D. Sacchetto, Q. Jeangros, G. Christmann, L. Barraud, A. Descoeudres, J. Geissbuhler, M. Despeisse, A. H. Wyser, S. Nicolay, and C. Ballif, “ITO/MoOx/a-Si:H(i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration,” IEEE Journal of Photovoltaics, vol. 7, 2017, pp. 1584-1590. [14]G. Gould and E. A. Irene, “An in situ ellipsometric study of aqueous NH4OH treatment of silicon,” Journal of the Electrochemical Society, vol. 136, 1989, pp. 1108-1112. [15]S. Adachi and K. Utani, “Chemical treatment effects of Si surfaces in NH4OH : H2O2 : H2O solutions studied by spectroscopic ellipsometry,” Japanese Journal of Applied Physics, vol. 32, 1993, pp. 1189-1191. [16]M. Itano, F. W. Kern, Jr., M. Miyashita, and T. Ohmi, “Particle removal from silicon wafer surface in wet cleaning process,” IEEE Transactions on Semiconductor Manufacturing, vol. 6, 1993, pp. 258-267. [17]K. Utani, T. Suzuki, and S. Adachi, “HF and NH4OH treated Si(111) surfaces studied by spectroscopic ellipsometry,” Japanese Journal of Applied Physics, vol. 7, 1993, pp. 3467-3471. [18]K. Utani, T. Suzuki, and S. Adachi, “Chemical treatment effects of Si surfaces in SC2 solutions studied by spectroscopic ellipsometry,” Japanese Journal of Applied Physics, vol. 33, 1994, pp. 15-17. [19]A. Nakajima, H. Aoyama, and K. Kawamura, “Isolated nanometer-size Si dot arrays fabricated using electron-beam lithography, reactive ion etching, and wet etching in NH4OH/H2O2/H2O,” Japanese Journal of Applied Physics, vol. 33, 1994, pp. 1796-1798. [20]K. Kobayashi, S. Adachi, and H. Takizawa, “NH4OH-treated Si(111) surfaces studied by spectroscopic ellipsometry and atomic force microscopy,” Japanese Journal of Applied Physics, vol. 35, 1996, pp. 515-519. [21]M. Gotoh, K. Sudoh, and H. Iwasaki, “Roughening of the Si/SiO2 interface during SC1-chemical treatment studied by scanning tunneling microscopy,” Journal of Vacuum Science and Technology B, vol. 4, 2000, pp. 2165-2168. [22]K. Peng, A. Lu, R. Zhang, and S. T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Advanced Functional Materials, vol. 18, 2008, pp. 3026-3035. [23]H. Lv, H. Shen, Y. Jiang, C. Gao, H. Zhao, and J. Yuan, “Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching,” Applied Surface Science, vol. 258, 2012, pp. 5451-5454. [24]Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in etching characteristics of TMAH and KOH on preparing inverted pyramids for silicon solar cells,” Applied Surface Science, vol. 264, 2013, pp. 761-766. [25]Y. T. Lu and A. R. Barron, “In-situ fabrication of a self-aligned selective emitter silicon solar cell using the gold top contacts to facilitate the synthesis of a nanostructured black silicon anti-reflective layer instead of an external metal nanoparticle catalyst,” ACS Applied Materials & Interfaces, 2015, pp. 1-45. [26]A. H. Reshak, M. M. Shahimin, S. Shaari, and N. Johan, “Surface modification via wet chemical etching of single-crystalline silicon for photovoltaic application,” Progress in Biophysics and Molecular Biology, vol. 113, 2013, pp. 327-332. [27]J. Wang, H. Tu, Q. Zhou, W. Zhu, and A. Liu, “In situ raman spectroscopy study on silicon surface in NH4OH/H2O and HCl/H2O aqueous solutions,” Microelectronic Engineering, vol. 56, 2001, pp. 221-225. [28]J. G. Park, S. H. Lee, and S. Y. Kim, “Particle removal and its mechanism on hydrophobic silicon wafer in highly diluted NH4OH solutions with an added surfactant,” Japanese Journal of Applied Physics, vol. 40, 2001, pp. 6182-6186. [29]M. Manimaran, T. Tada, and T. Kanayama, “Miniaturization of silicon nanopillars below 10 nm by NH4OH, KOH and HF wet chemical etching for light emission study,” Materials Letters, vol. 48, 2001, pp. 151-156. [30]V. Swarnalatha, A. V. Narasimha Rao, A. Ashok, S. S. Singh, and P. Pal, “Modified TMAH based etchant for improved etching characteristics on Si(100) wafer,” Journal of Micromechanics and Microengineering, vol. 27, 2017, pp. 1-8.
|