|
[1]林玄良,2006,”銲接製程穩健設計最佳化之研究”,國立交通大學機械工程系所博 士論文。 [2]鄭家傑,2022,”氬銲製程應用在不鏽鋼薄短管件強化銲接品質之研究”,國立高雄 科技大學機械工程系碩士論文。 [3] Brosnan, T., & Sun, D.-W. , 2004, "Improving quality inspection of food products by computer vision", Journal of Food Engineering, 61, 1, pp. 3-16. [4] Cha, Y. J., Choi, W., & Büyüköztürk, O., 2017, " Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks", Computer-Aided Civil and Infrastructure Engineering, 32, 5, pp. 361-378. [5] Krizhevsky, A., Sutskever, I., & Hinton, G. E., 2017, " ImageNet Classification with Deep Convolutional Neural Networks", Communications of the ACM, 60, 6, pp. 84-90. [6] Shaheed, K., Mao, A. H., Qureshi, I., Kumar, M., Hussain, S., Ullah, I., Zhang, X. M., 2022. "DS-CNN: A pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognition. ", Expert Systems with Applications, 191, pp. 18. [7] Sitaula, C., & Hossain, M. B., 2021, "Attention-based VGG-16 model for COVID-19 chest X-ray image classification", Applied Intelligence, 51, 5, pp. 2850-2863. [8] Tong, W., Chen, W. T., Han, W., Li, X. J., & Wang, L. Z., 2020, "Channel-Attention-Based DenseNet Network for Remote Sensing Image Scene Classification ", IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, pp. 4121- 4132. [9] Yang, J., Li, S. B., Wang, Z., Dong, H., Wang, J., & Tang, S. H., 2020, "Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges", Materials, 13, 24, pp. 23. [10]李柏桀,2018,”基於機械視覺之殘差網路深度學習像膠墊片表面瑕疵檢測”,國 立臺北科技大學機械工程系機電整合碩士論文。 [11] Simonyan, K., & Zisserman, A., 2015, "Very Deep Convolutional Networks for Large- Scale Image Recognition", International Conference on Learning Representations (ICLR), pp. 1-14. [12] Chollet, F., 2017, "Xception: Deep Learning with Depthwise Separable Convolutions" Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1800- 1807. [13] He, K., Zhang, X., Ren, S., & Sun, J., 2016, "Deep Residual Learning for Image Recognition", Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778. [14] Huang, G., Liu, Z., & Weinberger, K.Q., 2017, "Densely Connected Convolutional Networks", 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261-2269.
|