[1]J. Koskinen, "Cathodic-Arc and Thermal-Evaporation Deposition," Elsevier, 2014, pp. 3-55.
[2]陳柏諺, "Ti-Al-Si-N沉積在不銹鋼基材之高溫氧化性能研究," 明道大學材料暨系統工程研究所, 2009.
[3]X. Tan et al., "Study on the effect of film formation process and deposition rate on the orientation of the CsI:Tl thin film," Journal of Crystal Growth, vol. 476, pp. 64-68, 2017, doi: 10.1016/j.jcrysgro.2017.06.003.
[4]S. C. Gad, "Titanium," Elsevier, 2014, pp. 584-585.
[5]H. L. Freese, M. G. Volas, J. R. Wood, and M. Textor, "Titanium and its Alloys in Biomedical Engineering," Elsevier, 2001, pp. 9374-9380.
[6]C. L. Briant, "Refractory Metals and Alloys," Elsevier, 2001, pp. 8088-8095.
[7]H. Rosenberg, "Zirconium Production and Refining," Elsevier, 2001, pp. 9903-9904.
[8]S. Banerjee, "Nuclear Applications: Zirconium Alloys," Elsevier, 2001, pp. 6287-6299.
[9]A. Madhankumar et al., "Multi-functional ceramic hybrid coatings on biodegradable AZ31 Mg implants: electrochemical, tribological and quantum chemical aspects for orthopaedic applications," RSC Advances, vol. 4, no. 46, p. 24272, 2014, doi: 10.1039/c4ra02363c.
[10]Y.-S. Sun, J.-H. Chang, and H.-H. Huang, "Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide," vol. 528, pp. 130-135, 2013, doi: 10.1016/j.tsf.2012.06.088.
[11]W. Hu et al., "Corrosion and wear behaviours of a reactive-sputter-deposited Ta2O5 nanoceramic coating," vol. 368, pp. 177-190, 2016, doi: 10.1016/j.apsusc.2016.02.014.
[12]S. X. Liang, X. J. Feng, L. X. Yin, X. Y. Liu, M. Z. Ma, and R. P. Liu, "Development of a new β Ti alloy with low modulus and favorable plasticity for implant material," Materials Science and Engineering: C, vol. 61, pp. 338-343, 2016, doi: 10.1016/j.msec.2015.12.076.
[13]E. Romeo, D. Lops, E. Margutti, M. Ghisolfi, M. Chiapasco, and G. Vogel, "Long-term survival and success of oral implants in the treatment of full and partial arches: a 7-year prospective study with the ITI dental implant system," (in eng), Int J Oral Maxillofac Implants, vol. 19, no. 2, pp. 247-59, Mar-Apr 2004.
[14]M. McCracken, "Dental Implant Materials: Commercially Pure Titanium and Titanium Alloys," Journal of Prosthodontics, vol. 8, no. 1, pp. 40-43, 1999, doi: 10.1111/j.1532-849x.1999.tb00006.x.
[15]B. R. Chrcanovic, J. Kisch, T. Albrektsson, and A. Wennerberg, "Factors influencing the fracture of dental implants," Clinical Implant Dentistry and Related Research, vol. 20, no. 1, pp. 58-67, 2018, doi: 10.1111/cid.12572.
[16]S. T. Zinsli B, Mericske E, Mericske-Stern R., "Clinical evaluation of small-diameter ITI implants: a prospective study," Int J Oral Maxillofac Implants, vol. 20, no. 1, pp. 92-9, 2004.
[17]J. M. Cordeiro and V. A. R. Barão, "Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants?," Materials Science and Engineering: C, vol. 71, pp. 1201-1215, 2017, doi: 10.1016/j.msec.2016.10.025.
[18]L. M. Elias, S. G. Schneider, S. Schneider, H. M. Silva, and F. Malvisi, "Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys," vol. 432, no. 1-2, pp. 108-112, 2006, doi: 10.1016/j.msea.2006.06.013.
[19]H. Afeseh Ngwa et al., "Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease," Toxicology and Applied Pharmacology, vol. 240, no. 2, pp. 273-285, 2009, doi: 10.1016/j.taap.2009.07.025.
[20]D. Zaffe, C. Bertoldi, and U. Consolo, "Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti–6Al–4V screws, hydroxyapatite granules," Biomaterials, vol. 25, no. 17, pp. 3837-3844, 2004, doi: 10.1016/j.biomaterials.2003.10.020.
[21]M. Niinomi et al., "Development of Low Rigidity β-type Titanium Alloy for Biomedical Applications," MATERIALS TRANSACTIONS, vol. 43, no. 12, pp. 2970-2977, 2002, doi: 10.2320/matertrans.43.2970.
[22]P. Stenlund et al., "Bone response to a novel Ti–Ta–Nb–Zr alloy," Acta Biomaterialia, vol. 20, pp. 165-175, 2015, doi: 10.1016/j.actbio.2015.03.038.
[23]Z. Tolde et al., "Growth of a TiNb adhesion interlayer for bioactive coatings," Materials Science and Engineering: C, vol. 80, pp. 652-658, 2017, doi: 10.1016/j.msec.2017.07.013.
[24]A. A. Ivanova, M. A. Surmeneva, V. V. Shugurov, N. N. Koval, I. A. Shulepov, and R. A. Surmenev, "Physico-mechanical properties of Ti-Zr coatings fabricated via ion-assisted arc-plasma deposition," Vacuum, vol. 149, pp. 129-133, 2018, doi: 10.1016/j.vacuum.2017.12.024.
[25]D. A. Tallarico, A. L. Gobbi, P. I. Paulin Filho, M. E. H. Maia Da Costa, and P. A. P. Nascente, "Growth and surface characterization of TiNbZr thin films deposited by magnetron sputtering for biomedical applications," Materials Science and Engineering: C, vol. 43, pp. 45-49, 2014, doi: 10.1016/j.msec.2014.07.013.
[26]E. Frutos, M. Karlík, J. A. Jiménez, H. Langhansová, J. Lieskovská, and T. Polcar, "Development of new β/α″-Ti-Nb-Zr biocompatible coating with low Young's modulus and high toughness for medical applications," Materials & Design, vol. 142, pp. 44-55, 2018, doi: 10.1016/j.matdes.2018.01.014.
[27]S. Achache et al., "Sputtered Gum metal thin films showing bacterial inactivation and biocompatibility," vol. 146, pp. 687-691, 2016, doi: 10.1016/j.colsurfb.2016.07.007.
[28]R. Shu et al., "Microstructure and mechanical, electrical, and electrochemical properties of sputter-deposited multicomponent (TiNbZrTa)Nx coatings," Surface and Coatings Technology, vol. 389, p. 125651, 2020, doi: 10.1016/j.surfcoat.2020.125651.
[29]H. Cicek, O. Baran, A. Keles, Y. Totik, and I. Efeoglu, "A comparative study of fatigue properties of TiVN and TiNbN thin films deposited on different substrates," Surface and Coatings Technology, vol. 332, pp. 296-303, 2017, doi: 10.1016/j.surfcoat.2017.06.078.
[30]洪木清、陳智崇, "高溫快速熱退火技術於AM-OLED TFT-Array 之應用," 工業材料雜誌, vol. 254期, 2008.02. [Online]. Available: https://www.materialsnet.com.tw/DocView.aspx?id=6693.
[31]鍾思行, "以快速熱退火法加強金屬側向誘發結晶速率之研究," 國立交通大學 材料科學與工程研究所 碩士論文, 2007.
[32]洪木清、陳智崇, "高溫快速熱退火技術於AM-OLED TFT-Array 之應用," 工業材料雜誌254期, 2008. [Online]. Available: https://www.materialsnet.com.tw/DocView.aspx?id=6693.
[33]Q. Yang et al., "In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells," Solar Energy Materials and Solar Cells, vol. 210, p. 110518, 2020, doi: 10.1016/j.solmat.2020.110518.
[34]V. Janardhanam et al., "Electrical properties of a Cu-germanide Schottky contact to n-type Ge depending on its microstructural evolution driven by rapid thermal annealing," Thin Solid Films, vol. 632, pp. 23-27, 2017, doi: 10.1016/j.tsf.2017.04.031.
[35]龔君偉, "利用快速熱退火技術增進金屬誘發側向結晶的速率," 國立交通大學材料科學與工程學系碩士論文, 2005.[36]P. E. Hovsepian, D. B. Lewis, W. D. Münz, S. B. Lyon, and M. Tomlinson, "Combined cathodic arc/unbalanced magnetron grown CrN/NbN superlattice coatings for corrosion resistant applications," Surface and Coatings Technology, vol. 120-121, pp. 535-541, 1999, doi: 10.1016/s0257-8972(99)00439-9.
[37]M. Braic, M. Balaceanu, V. Braic, A. Vladescu, G. Pavelescu, and M. Albulescu, "Synthesis and characterization of TiN, TiAIN and TiN/TiAIN biocompatible coatings," vol. 200, no. 1-4, pp. 1014-1017, 2005, doi: 10.1016/j.surfcoat.2005.02.140.
[38]C. J. Tavares, L. Rebouta, B. Almeida, J. Bessa E Sousa, M. F. Da Silva, and J. C. Soares, "Deposition and characterization of multilayered TiN/ZrN coatings," Thin Solid Films, vol. 317, no. 1-2, pp. 124-128, 1998, doi: 10.1016/s0040-6090(97)00607-x.
[39]L. Pichon, T. Girardeau, A. Straboni, F. Lignou, J. Perrière, and J. M. Frigério, "Ion beam assisted deposition of zirconium nitrides for modulated optical index structures," vol. 147, no. 1-4, pp. 378-382, 1999, doi: 10.1016/s0168-583x(98)00567-9.
[40]A. Fragiel, M. H. Staia, J. Muñoz-Saldaña, E. S. Puchi-Cabrera, C. Cortes-Escobedo, and L. Cota, "Influence of the N2 partial pressure on the mechanical properties and tribological behavior of zirconium nitride deposited by reactive magnetron sputtering," Surface and Coatings Technology, vol. 202, no. 15, pp. 3653-3660, 2008, doi: 10.1016/j.surfcoat.2008.01.001.
[41]Y. Kang, C. Lee, and J. Lee, "Effects of processing variables on the mechanical properties of Ta/TaN multilayer coatings," vol. 75, no. 1, pp. 17-23, 2000, doi: 10.1016/s0921-5107(00)00380-9.
[42]Y. Jusman, S. C. Ng, and N. A. Abu Osman, "Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX," vol. 2014, pp. 1-11, 2014, doi: 10.1155/2014/289817.
[43]U. o. S. H Dittrich and A Bieniok, Salzburg, Austria, "Structural Properties: X-Ray and Neutron Diffraction," Encyclopedia of Electrochemical Power Sources, pp. 718-737, 2009, doi: 10.1016/B978-044452745-5.00074-5.
[44]N. Waeselmann, "Structural transformations in complex perovskite-type relaxor and relaxor-based ferroelectrics at high pressures and temperatures," 2012.
[45]Y. Wang et al., "Real-time synchrotron x-ray studies of low-and high-temperature nitridation of c-plane sapphire," Physical Review B, vol. 74, 03/03 2006, doi: 10.1103/PhysRevB.74.235304.
[46]F. Wang et al., "Three-Dimensional Super-Resolution Morphology by Near-Field Assisted White-Light Interferometry," Scientific Reports, vol. 6, no. 1, p. 24703, 2016, doi: 10.1038/srep24703.
[47]M. Brann, J. D. Suter, R. S. Addleman, and C. Larimer, "Monitoring bacterial biofilms with a microfluidic flow chip designed for imaging with white-light interferometry," (in eng), Biomicrofluidics, vol. 11, no. 4, p. 044113, Jul 2017, doi: 10.1063/1.4985773.
[48]M. Masrouri, G. Faraji, M. S. Pedram, and M. Sadrkhah, "In-vivo study of ultrafine-grained CP-Ti dental implants surface modified by SLActive with excellent wettability," International Journal of Adhesion and Adhesives, vol. 102, p. 102684, 2020, doi: 10.1016/j.ijadhadh.2020.102684.
[49]J.-W. Song, D.-L. Zeng, and L.-W. Fan, "Temperature dependence of contact angles of water on a stainless steel surface at elevated temperatures and pressures: In situ characterization and thermodynamic analysis," Journal of Colloid and Interface Science, vol. 561, pp. 870-880, 2020, doi: 10.1016/j.jcis.2019.11.070.
[50]陳. 張育唐, "接觸角(Contact Angle)," 國科會高瞻自然科學教學資源平台, 2011.
[51]謝章興, "四點探針," 明志科技大學材料工程系儀器介紹.
[52]G. Hsieh, "Experimental limitations in impedance spectroscopy: Part VI. Four-point measurements of solid materials systems," vol. 100, no. 3-4, pp. 297-311, 1997, doi: 10.1016/s0167-2738(97)00355-x.
[53]G. D, "Fracture Toughness of Ceramics by the Vickers Indentation Crack Length Method: A Critical Review," 2007.
[54]N. Vidakis, A. Antoniadis, and N. Bilalis, "The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds," vol. 143-144, pp. 481-485, 2003, doi: 10.1016/s0924-0136(03)00300-5.
[55]P.-L. Larsson, "On the Invariance of Hardness at Vickers Indentation of Pre-Stressed Materials," Metals, vol. 7, no. 7, p. 260, 2017, doi: 10.3390/met7070260.
[56]G. Quinn, "Fracture Toughness of Ceramics by the Vickers Indentation Crack Length Method: A Critical Review," A Critical Review, vol. 27, pp. 45-62, 03/01 2006, doi: 10.1002/9780470291313.ch5.
[57]S.-K. Kang, Y.-C. Kim, J.-W. Lee, D. Kwon, and J.-Y. Kim, "Effect of contact angle on contact morphology and Vickers hardness measurement in instrumented indentation testing," vol. 85, pp. 104-109, 2014, doi: 10.1016/j.ijmecsci.2014.05.002.
[58]J. A. Thornton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings," Journal of Vacuum Science and Technology, vol. 11, no. 4, pp. 666-670, 1974/07/01 1974, doi: 10.1116/1.1312732.
[59]S. Yuan et al., "In-situ fabrication of gradient titanium oxide ceramic coating on laser surface textured Ti6Al4V alloy with improved mechanical property and wear performance," Vacuum, vol. 176, p. 109327, 2020, doi: 10.1016/j.vacuum.2020.109327.
[60]Z.-K. Huang and K.-S. Chen, "Nanoindentation fracture and fatigue characterization of PECVD silicon nitride films subjected to rapid thermal annealing," vol. 207, pp. 49-60, 2014, doi: 10.1016/j.sna.2013.12.023.
[61]D. F. Arias, Y. C. Arango, and A. Devia, "Study of TiN and ZrN thin films grown by cathodic arc technique," Applied Surface Science, vol. 253, no. 4, pp. 1683-1690, 2006, doi: 10.1016/j.apsusc.2006.03.017.
[62]X. Gong et al., "Preparation of Al2O3 coating on TiN coating by polymer-assisted deposition to improve oxidation resistance in coking inhibition applications," Ceramics International, vol. 46, no. 6, pp. 7774-7782, 2020, doi: 10.1016/j.ceramint.2019.11.281.
[63]E. Satheeshkumar, T. Makaryan, A. Melikyan, H. Minassian, Y. Gogotsi, and M. Yoshimura, "One-step Solution Processing of Ag, Au and Pd@MXene Hybrids for SERS," Scientific Reports, vol. 6, no. 1, p. 32049, 2016, doi: 10.1038/srep32049.
[64]J. Halim et al., "X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)," Applied Surface Science, vol. 362, pp. 406-417, 2016, doi: 10.1016/j.apsusc.2015.11.089.
[65]Y.-I. Chen, Y.-E. Ke, M.-C. Sung, and L.-C. Chang, "Rapid thermal annealing of Cr–Si–N, Ta–Si–N, and Zr–Si–N coatings in glass molding atmospheres," Surface and Coatings Technology, vol. 389, p. 125662, 2020, doi: 10.1016/j.surfcoat.2020.125662.
[66]S. Khan, M. Mehmood, I. Ahmad, F. Ali, and A. Shah, "Structural and electrical resistivity characteristics of vacuum arc ion deposited zirconium nitride thin films," vol. 30, pp. 486-493, 2015, doi: 10.1016/j.mssp.2014.10.029.
[67]S.-B. Zhu et al., "Effects of rapid thermal annealing on Hf-doped ZnO films grown by atomic layer deposition," vol. 577, pp. 340-344, 2013, doi: 10.1016/j.jallcom.2013.05.181.
[68]K.-K. Kim et al., "High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing," Journal of Applied Physics, vol. 97, no. 6, p. 066103, 2005, doi: 10.1063/1.1863416.
[69]H. Shen and L. Wang, "Formation, tribological and corrosion properties of thicker Ti-N layer produced by plasma nitriding of titanium in a N2-NH3 mixture gas," Surface and Coatings Technology, vol. 393, p. 125846, 2020, doi: 10.1016/j.surfcoat.2020.125846.