1.中國時報,2021,宜蘭86師生食物中毒檢驗結果出爐糙米驗出金黃色葡萄球菌。https://www.chinatimes.com/realtimenews/20211208003294-260405?chdtv
2.王曉紅、於錄、週泐、熊凌鋅、史祺雲、宋曉平,2013,桃柁酚對金黃色葡萄球菌生物膜形成及cidA表達的影響。中國預防獸醫學報,35(5),359-363。
3.合敏實業有限公司,2013,產品介紹_PVC工業管路系統。http://www.hm-plastic.com.tw/product.php?lid=2011%2F12%2F24_3E30VTFUW&sid=2013%2F04%2F17_3RI0VZSQH
4.周士高,2022,微氣泡結合殺菌劑去除苜蓿與綠豆種子上之鼠傷寒沙門氏菌與對其芽菜之影響,國立高雄科技大學水產食品科學研究所碩士論文。5.陳品妡,2011,鼠傷寒沙門氏菌侵入性相關基因之初步探討,國立中興大學食品暨應用生物科技學系所碩士論文。6.陳嵩岳,2022,結合不同殺菌劑之微氣泡對帶殼蛋上沙門氏桿菌之殺菌效力,國立高雄科技大學水產食品科學研究所碩士論文。7.經濟部標準檢驗局,2022,聚氯乙烯(PVC)塑膠管類。https://www.bsmi.gov.tw/wSite/ct?xItem=57612&ctNode=4644&mp=1
8.蔡文城與蔡岳廷,2019,食品微生物檢驗技術,九州圖書文物有限公司。
9.歐學東、施文元,2013,口腔微生態學,中國,北京:人民衛生出版社。https://sim.xiaoshuo.qq.com/chapter/1036534703
10.衛生福利部南投醫院,2020,衛生局鵝肉食物中毒事件。https://www.nant.mohw.gov.tw/?aid=509&pid=0&page_name=detail&iid=1435
11.衛生福利部食品藥物管理署 (衛服部食藥署),2021,沙門氏桿菌 (Salmonella)-各類食品中毒原因。https://www.fda.gov.tw/tc/siteContent.aspx?sid=1942
12.衛生福利部食品藥物管理署 (衛服部食藥署),2021,金黃色葡萄球菌(Staphylococcus aureus) - 各類食品中毒原因。https://www.fda.gov.tw/tc/sitecontent.aspx?sid=1937
13.衛生福利部食品藥物管理署 (衛福部食藥署),2023,歷年食品中毒案例https://www.fda.gov.tw/TC/siteContent.aspx?sid=323#.VfYlO7kViUk
14.衛福部食藥署,2017,食品用洗潔劑衛生標準 (96.09.20訂定)。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040070
15.Agarwal, A., Ng, W. J., & Liu, Y. (2011). Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84(9), 1175-1180
https://doi.org/10.1016/j.chemosphere.2011.05.054.
16.Alam, F., & Balani, K. (2017). Adhesion force of Staphylococcus aureus on various biomaterial surfaces. Journal of the Mechanical Behavior of Biomedical Materials, 65, 872-880. https://doi.org/10.1016/j.jmbbm.2016.10.009
17.Alenyorege, E. A., Ma, H., Ayim, I., Aheto, J. H., Hong, C., & Zhou, C. (2019). Reduction of Listeria innocua in fresh-cut Chinese cabbage by a combined washing treatment of sweeping frequency ultrasound and sodium hypochlorite. LWT-Food Science and Technology, 101, 410-418. https://doi.org/10.1016/j.lwt.2018.11.048
18.Augustin, M., Ali-Vehmas, T., & Atroshi, F. (2004). Assessment of enzymatic cleaning agents and disinfectants against bacterial biofilms. Journal of Pharmacy & Pharmaceutical sciences: a Publication of the Canadian Society for Pharmaceutical Sciences, Société canadienne des sciences, Journal of Pharmacy and Pharmaceutical Science, 7(1), 55-64. http://hdl.handle.net/1975/547
19.Augustyn, W., Chruściel, A., Hreczuch, W., Kalka, J., Tarka, P., & Kierat, W. (2022). Inactivation of Spores and Vegetative Forms of Clostridioides difficile by Chemical Biocides: Mechanisms of Biocidal Activity, Methods of Evaluation, and Environmental Aspects. International Journal of Environmental Research and Public Health, 19(2), 750. https://doi.org/10.3390/ijerph19020750
20.Bai, X., Nakatsu, C. H., & Bhunia, A. K. (2021). Bacterial biofilms and their implications in pathogenesis and food safety. Foods, 10(9), 2117.
21.Bang, H. J., Park, S. Y., Kim, S. E., Rahaman, M. M. F., & Ha, S. D. (2017). Synergistic effects of combined ultrasound and peroxyacetic acid treatments against Cronobacter sakazakii biofilms on fresh cucumber. LWT, 84, 91-98. https://doi.org/10.1016/j.lwt.2017.05.037
22.Bang, J., Hong, A., Kim, H., Beuchat, L. R., Rhee, M. S., Kim, Y., & Ryu, J. H. (2014). Inactivation of Escherichia coli O157: H7 in biofilm on food-contact surfaces by sequential treatments of aqueous chlorine dioxide and drying. International Journal of Food Microbiology, 191, 129-134. https://doi.org/10.1016/j.ijfoodmicro.2014.09.014
23.Bansal, M., Dhowlaghar, N., Nannapaneni, R., Kode, D., Chang, S., Sharma, C. S., McDaniel, C., & Kiess, A. (2021). Decreased biofilm formation by planktonic cells of Listeria monocytogenes in the presence of sodium hypochlorite. Food microbiology, 96, 103714. https://doi.org/10.1016/j.fm.2020.103714
24.Belas, R. (2014). Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends in Microbiology, 22(9), 517-527. https://doi.org/10.1016/j.tim.2014.05.002
25.Berrang, M. E., Frank, J. F., & Meinersmann, R. J. (2008). Effect of chemical sanitizers with and without ultrasonication on Listeria monocytogenes as a biofilm within polyvinyl chloride drain pipes. Journal of Food Protection, 71(1), 66-69. https://doi.org/10.4315/0362-028X-71.1.66
26.Bridier, A., Sanchez-Vizuete, P., Guilbaudb, M. Piard, J.-C., Naïtali, M., & Briandet, R. (2015). Biofilm-associated persistence of food-borne pathogens. Food Microbiology, 45, 167-178. https://doi.org/10.1016/j.fm.2014.04.015
27.BrockwayO.L. (1933). The three-electron bond in chlorine dioxide. Proceedings of the National Academy of Sciences,, 19(3), 303-307
28.Burfoot, D., Limburn, R., & Busby, R. (2017). Assessing the effects of incorporating bubbles into the water used for cleaning operations relevant to the food industry. International Journal of Food Science & Technology, 52(8), 1894-1903. https://doi.org/10.1111/ijfs.13465
29.Burton, N. C., Adhikari, A., Iossifova, Y., Grinshpun, S. A., & Reponen, T. (2008). Effect of gaseous chlorine dioxide on indoor microbial contaminants. Journal of the Air & Waste Management Association, 58(5), 647-656. https://doi.org/10.3155/1047-3289.58.5.647
30.Byun, K. H., Han, S. H., Yoon, J. W., Park, S. H., & Ha, S. D. (2021). Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control, 123, 107838. https://doi.org/10.1016/j.foodcont.2020.107838
31.Cai, Y., Yu, C., Zhong, S., Chen, G., & Liu, L. (2023). Roughness-controlled cell-surface interactions mediate early biofilm development in drinking water systems. Journal of Environmental Chemical Engineering, 11(3), 110101.
https://doi.org/10.1016/j.jece.2023.110101
32.Castelijn, G. A., van der Veen, S., Zwietering, M. H., Moezelaar, R., & Abee, T. (2012). Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium. Biofouling, 28(1), 51-63. https://doi.org/10.1080/08927014.2011.648927
33.CDC. (2018). Staphylococcal (Staph) Food Poisoning. https://www.cdc.gov/foodsafety/diseases/staphylococcal.html
34.CDC. (2022). Salmonella Homepage. https://www.cdc.gov/salmonella/index.html
35.Cerca, N., Pier, GB., Vilanova, M., & Oliveira, R. (2005). Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Research in Microbiology, 156(4), 506-514. https://doi.org/10.1016/j.resmic.2005.01.007
36.Chia, T. W. R., Goulter, R. M., McMeekin, T., Dykes, G. A., & Fegan, N. (2009). Attachment of different Salmonella serovars to materials commonly used in a poultry processing plant. Food Microbiology, 26(8), 853-859. https://doi.org/10.1016/j.fm.2009.05.012
37.Chu, L. B., Xing, X. H., Yu, A. F., Zhou, Y. N., Sun, X. L., & Jurcik, B. (2007). Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere, 68(10), 1854-1860. https://doi.org/10.1016/j.chemosphere.2007.03.014
38.Cortés M.E., Bonilla J.C., & Sinisterra R.D. (2011). Biofilm formation, control and novel strategies for eradication. Science Against Microbial Pathogens: Communicating Current Research and Technological Advances, (2), 896-905. https://www.researchgate.net/publication/292710235
39.Cramton, S. E., Gerke, C., Schnell, N. F., Nichols, W. W., & Götz, F. (1999). The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infection and Immunity, 67(10), 5427-5433. https://doi.org/10.1128/iai.67.10.5427-5433.1999
40.Dar, M.A. Ahmad, S.M. Bhat, S.A. Ahmed, R. Urwat, U. Mumtaz, P.T. Bhat, S.A. Dar, T.A. Shah, R.A. & Gana, N.A. (2017). Salmonella typhimurium in poultry: a review. World's Poultry Science Journal, 73(2), 345-354. https://doi.org/10.1017/S0043933917000204
41.Davies, D. G., & Geesey, G. G. (1995). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Applied and Environmental Microbiology, 61(3), 860-867. https://doi.org/10.1128/aem.61.3.860-867.1995
42.Deborde, M. & Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Research, 42, 13-51. https://doi.org/10.1016/j.watres.2007.07.025
43.DeQueiroz, G. A., & Day, D. F. (2007). Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. Journal of Applied Microbiology, 103(4), 794-802. https://doi.org/10.1111/j.1365-2672.2007.03299.x
44.Di Ciccio, P., Vergara, A., Festino, A. R., Paludi, D., Zanardi, E., Ghidini, S., & Ianieri, A. (2015). Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control, 50, 930-936. https://doi.org/10.1016/j.foodcont.2014.10.048
45.Dickson, J.S. & Koohmaraie,M. (1989). Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Applied and Environmental Microbiology, (55), 832-836. https://doi.org/10.1128/aem.55.4.832-836.1989
46.DonlanM.R. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881. https://doi.org/10.3201%2Feid0809.020063
47.Estrela, C., Estrela, C. R., Barbin, E. L., Spanó, J. C. E., Marchesan, M. A., & Pécora, J. D. (2002). Mechanism of action of sodium hypochlorite. Brazilian Dental Journal, 13, 113-117. https://doi.org/10.1590/S0103-64402002000200007
48.Fan, W., Li, Y., Lyu, T., Chen, Z., Jarvis, P., Huo, Y., Xiao, D., & Huo, M. (2023). A modelling approach to explore the optimum bubble size for micro-nanobubble aeration. Water Research, 228, 119360,https://doi.org/10.1016/j.watres.2022.119360
49.Fedtke, I., Mader, D., Kohler, T., Moll, H., Nicholson, G., Biswas, R., Henseler, K., Götz, F., Zähringer, U. & Peschel, A. (2007). A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Molecular Microbiology, 65(4), 1078-1091. https://doi.org/10.1111/j.1365-2958.2007.05854.x
50.Flemming H. C. & Wingender J. (2010). The biofilm matrix. Nature Reviews Microbiology, (8), 623-633. https://doi.org/10.1038/nrmicro2415
51.Flemming, H. C., Wingender, J., Griegbe, T., & Mayer, C. (2000). Physico-chemical properties of biofilms. Biofilms: recent advances in their study and control. Amsterdam: Harwood Academic Publishers, 19-34.
52.Francisco, CAI, Araújo Naves, EA, Ferreira, DC, Rosário, DKAD, Cunha, MF, & Bernardes, PC. (2017). Synergistic effect of sodium hypochlorite and ultrasound bath in the decontamination of fresh arugulas. Journal of Food Safety, 38, p. e12391. https://doi.org/10.1111/jfs.12391
53.Gabriel, A. A., Ballesteros, M. L. P., Rosario, L. M. D., Tumlos, R. B., & Ramos, H. J. (2018). Elimination of Salmonella enterica on common stainless steel food contact surfaces using UV-C and atmospheric pressure plasma jet. Food Control, 86, 90-100.
54.GabrielaM, A.A., Ballesteros, L.P., .Rosariob,L.M.D., Tumlos, R.B., & Ramos, H.J. (2018). Elimination of Salmonella enterica on common stainless steel food contact surfaces using UV-C and atmospheric pressure plasma jet. Food Control, 86, 90-100. https://doi.org/10.1016/j.foodcont.2017.11.011
55.Gan, W., Ge, Y., Zhong, Y., & Yang, X. (2020). The reactions of chlorine dioxide with inorganic and organic compounds in water treatment: kinetics and mechanisms. Environmental Science: Water Research & Technology, 6(9), 2287-2312. https://doi.org/10.1039/D0EW00231C
56.Global Biodiversity Information Facility (GBIF), 1884, Staphylococcus Rosenbach. https://www.gbif.org/species/7945561
57.Gomes, I. B., Simões, M., & Simões, L. C. (2016). The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states. Science of the Total Environment, 565, 40-48. https://doi.org/10.1016/j.scitotenv.2016.04.136
58.Grimont, P. A. & Weill, F. X. (2007). Antigenic formulae of the Salmonella serovars. WHO collaborating centre for reference and research on Salmonella, 9, 1-166.
59.Gunduz, G.T. & Tuncel, G. (2006). Biofilm formation in an ice cream plant. Antonie Van Leeuwenhoek, 89(3), 329–336. https://doi.org/10.1007/s10482-005-9035-9
60.Guo, Y., Yu, X., Wang, J., Hua, D., You, Y., Wu, Q., Ji, Q., Zhang, J., Li, L., Hu, Y., Wu, Z., Wei, X., Jin, L., Meng, F., Yang, Y., Hu, X., Long, L., Hu, S., Qi, H., Ma, J., Bei, W., Yan, X., Wang, H., & He, Z. (2023). A food poisoning caused by ST7 Staphylococcal aureus harboring sea gene in Hainan province. China. Frontiers in Microbiology, 14. https://doi.org/10.3389%2Ffmicb.2023.1110720
61.Haiko, J., & Westerlund-Wikström, B. (2013). The role of the bacterial flagellum in adhesion and virulence. Biology, 2(4), 1242-1267. https://doi.org/10.3390/biology2041242
62.Health.Institutes of National. (1997). Minutes of the National Advisory Dental and Craniofacial Research Council—153rd Meeting. Bethesda, MD.
63.Houdt, R.V., & Michiels, C.W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, (4), 1117-1131. https://doi.org/10.1111/j.1365-2672.2010.04756.x
64.Huang, J., Sun, L., Liu, H., Mo, Z., Tang, J., Xie, G., & Du, M. (2020). A review on bubble generation and transportation in Venturi-type bubble generators. Experimental and Computational Multiphase Flow, 2(3), 123-134. https://doi.org/10.1007/s42757-019-0049-3
65.Huang, T. S., Xu, C., Walker, K., West, P., Zhang, S., & Weese, J. (2006). Decontamination efficacy of combined chlorine dioxide with ultrasonication on apples and lettuce. Journal of Food Science, 71(4), M134-M139. https://doi.org/10.1111/j.1750-3841.2006.00015.x
66.Ikeura, H., Kobayashi, F., & Tamaki, M. (2011). Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. Journal of Food Engineering, 103(3), 345-349. https://doi.org/10.1016/j.jfoodeng.2010.11.002
67.Ikeura, H., Kobayashi, F., & Tamaki, M. (2011). Removal of residual pesticides in vegetables using ozone microbubbles. Journal of Hazardous Materials, 186(1), 956-959. https://doi.org/10.1016/j.jhazmat.2010.11.094
68.ISO20480-1. (2017). INTERNATIONAL STANDARD ISO 20480-1. https://www.iso.org/obp/ui/#iso:std:iso:20480:-1:ed-1:v1:en
69.Janssens, J. C. A., Steenackers, H., Robijns, S., Gellens, E., Levin, J., & Zhao, H. (2008). Brominated furanones inhibit biofilm formation by Salmonella enterica serovar Typhimurium. Applied and Environmental Microbiology, 74(21), 6639-6648
70.Joseph, B., Otta, S. K., Karunasagar, I., & Karunasagar, I. (2001). Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. International Journal of Food Microbiology, 64(3), 367-372. https://doi.org/10.1016/S0168-1605(00)00466-9
71.Kim, J. G., Yousef, A. E., & Khadre, M. A. (2003). Ozone and its current and future application in the food industry. Department of Food Science and Technology , 167-218.
72.Kim, J. M., Huang, T. S., Marshall, M. R., & Wei, C. I. (1999). Chlorine dioxide treatment of seafoods to reduce bacterial loads. Journal of Food Science, 64(6), 1089-1093. https://doi.org/10.1111/j.1365-2621.1999.tb12288.x
73.Kim, J., Pitts, B., Stewart, P. S., Camper, A., & Yoon, J. (2008). Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrobial Agents and Chemotherapy, 52(4), 1446-1453. https://doi.org/10.1128/aac.00054-07
74.Kim, S. I., & Yoon, H. (2019). Roles of YcfR in biofilm formation in Salmonella Typhimurium ATCC 14028. Molecular Plant-Microbe Interactions, 32(6), 708-716. https://doi.org/10.1094/MPMI-06-18-0166-R
75.Kim, W. J., Kim, S. H., & Kang, D. H. (2020). Thermal and non-thermal treatment effects on Staphylococcus aureus biofilms formed at different temperatures and maturation periods. Food Research International, 137, 109432. https://doi.org/10.1016/j.foodres.2020.109432
76.Klintham, P., Tongchitpakdee, S., Chinsirikul, W., & Mahakarnchanakul, W. (2017). Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Salmonella Typhimurium on Thai leafy vegetables. Food Control, 77, 260-269. https://doi.org/10.1016/j.foodcont.2017.02.030
77.Krasowska, A., & Sigler, K. (2014). How microorganisms use hydrophobicity and what does this mean for human needs?. Frontiers in Cellular and Infection Microbiology, 4, 112. https://doi.org/10.3389/fcimb.2014.00112
78.Kumar, C. G., & Anand, S. K. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food microbiology, 42(1-2), 9-27. https://doi.org/10.1016/S0168-1605(98)00060-9.
79.Kwack, Y., Kim, K. K., Hwang, H., & Chun, C. (2014). An ozone micro-bubble technique for seed sterilization in Alfalfa sprouts. Horticultural Science and Technology, 901-905,https://doi.org/10.7235/hort.2014.14129
80.Lee, K. J., Lee, M. A., Hwang, W., Park, H., & Lee, K. H. (2016). Deacylated lipopolysaccharides inhibit biofilm formation by Gram-negative bacteria. Biofouling, 32(7), 711-723. https://doi.org/10.1080/08927014.2016.1193595
81.Lee, W. J., Lee, C. H., Yoo, J. Y., Kim, K. Y., & Jang, K. I. (2011). Sterilization efficacy of washing method using based on microbubbles and electrolyzed water on various vegetables. Journal of the Korean Society of Food Science and Nutrition, 40(6), 912-917.
82.LeLièvre. V., Besnard, A., Schlusselhuber, M., Desmasures, N., & Dalmasso, M. (2019). Phages for biocontrol in foods: What opportunities for Salmonella sp. control along the dairy food chain. Food Microbiology, (78) 89-98. https://doi.org/10.1016/j.fm.2018.10.009
83.Lemon, K. P., Higgins, D. E., & Kolter, R. (2007). Flagellar motility is critical for Listeria monocytogenes biofilm formation. Journal of Bacteriology, 189(12), 4418-4424. https://doi.org/10.1128/jb.01967-06
84.Li, X., Liu, C., Liu, F., Zhang, X., Peng, Q., Wu, G., Lin, J., & Zhao, Z. (2023). Accelerated removal of five pesticide residues in three vegetables with ozone microbubbles. Food Chemistry, 403, 134386. https://doi.org/10.1016/j.foodchem.2022.134386
85.Manuel, C. M., Nunes, O. C., & Melo, L. F. (2007). Dynamics of drinking water biofilm in flow/non-flow conditions. Water Research, 41(3), 551-562. https://doi.org/10.1016/j.watres.2006.11.007
86.McLennan, M. K., Ringoir, D. D., Frirdich, E., Svensson, S. L., Wells, D. H., Jarrell, H., Szymanski, C. M., & Gaynor, E. C. (2008). Campylobacter jejuni biofilms up-regulated in the absence of the stringent response utilize a calcofluor white-reactive polysaccharide. Journal of Bacteriology, 190(3), 1097-1107. https://doi.org/10.1128/jb.00516-07
87.Meireles, A., Machado, I., Fulgêncio, R., Mergulhão, F., Melo, L., & Simões, M. (2015). Efficacy of antimicrobial combinations to reduce the use of sodium hypochlorite in the control of planktonic and sessile Escherichia coli. Biochemical Engineering Journal, 104, 115-122. https://doi.org/10.1016/j.bej.2015.02.035
88.Melo, L.F., Bott, T.R., Fletcher, M., & Capdeville, B. (2012). Biofilms-science and technology (Vol. 223). Springer Science & Business Media.
89.Miquel, S., Lagrafeuille, R., Souweine, B., & Forestier, C. (2016). Anti-biofilm activity as a health issue. Frontiers in Microbiology, 7, 592. https://doi.org/10.3389/fmicb.2016.00592
90.Moraes, J.O., Cruz, E.A., Pinheiro, I., Oliveira, T.C.M., Alvarenga, V., Sant’Ana, A.S., & Magnani, M. (2019). An ordinal logistic regression approach to predict the variability on biofilm formation stages by five Salmonella enterica strains on polypropylene and glass surfaces as affected by pH, temperature and NaCl. Food Microbiology, 83, 95-103. https://doi.org/10.1016/j.fm.2019.04.012
91.Morino, H., Fukuda, T., Miura, T., & Shibata, T. (2011). Effect of low‐concentration chlorine dioxide gas against bacteria and viruses on a glass surface in wet environments. Letters in Applied Microbiology, 53(6), 628-634. https://doi.org/10.1111/j.1472-765X.2011.03156.x
92.Murphy, M. F., Edwards, T., Hobbs, G., Shepherd, J., & Bezombes, F. (2016). Acoustic vibration can enhance bacterial biofilm formation. Journal of Bioscience and Bioengineering, 122(6), 765-770.
93.Musgrove, M. & Berrang, M. (2008). Presence of aerobic microorganisms, Enterobacteriaceae and Salmonella in the shell egg processing environment. International Association for Food Protection Proceedings, 47-48. https://doi.org/10.3382/ps.2009-00021
94.Musgrove, M., Ingram, K., Hinton, J.A., & Liljebjelke, K. (2010). Molecular characterization and serotyping of Salmonella isolated from the shell egg processing environment. International Association for Food Protection Proceedings, 43.
95.News Nations United. (2022). Kinder brand chocolates now linked to salmonella poisoning in 11 countries. https://news.un.org/en/story/2022/04/1117072
96.NewsSafetyFood. (2022). 450 sick in Ferrero chocolate Salmonella outbreak.https://www.foodsafetynews.com/2022/08/450-sick-in-ferrero-chocolate-salmonella-outbreak/
97.News United Nations. (2022). Kinder brand chocolates now linked to salmonella poisoning in 11 countries. https://news.un.org/en/story/2022/04/1117072
98.Nguyen, H. T., Nguyen, T. H., & Otto, M. (2020). The Staphylococcal exopolysaccharide PIA–Biosynthesis and role in biofilm formation, colonization, and infection. Computational and Structural Biotechnology Journal, 18, 3324-3334. https://doi.org/10.1016/j.csbj.2020.10.027
99.Nguyen, H. D. N., Yang, Y. S., & Yuk, H. G. (2014). Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT - Food Science and Technology, 55, 383-388. https://doi.org/10.1016/j.lwt.2013.09.022.
100.Niemira, B. A., & Cooke, P. H. (2010). Escherichia coli O157: H7 biofilm formation on Romaine lettuce and spinach leaf surfaces reduces efficacy of irradiation and sodium hypochlorite washes. Journal of Food Science, 75(5), M270-M277. https://doi.org/10.1111/j.1750-3841.2010.01650.x
101.Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial exopolysaccharides: functionality and prospects. International Journal of Molecular Sciences, 13(11), 14002-14015. https://doi.org/10.3390/ijms131114002
102.Okshevsky, M., Regina, V. R., & Meyer, R. L. (2015). Extracellular DNA as a target for biofilm control. Urrent Opinion in Biotechnology, 33, 73-80. https://doi.org/10.1016/j.copbio.2014.12.002
103.Omwenga I., Aboge G.O., Mitema E.S., Obiero G., Ngaywa C., & Ngwili N. (2019). Staphylococcus aureus enterotoxin genes detected in milk from various livestock species in northern pastoral region of Kenya. Food Control, (103) 126-132. https://doi.org/10.1016/j.foodcont.2019.04.005
104.ONARI, H., SAGA, T., WATANABE, K., MAEDA, K., & MATSUO, K. (1999). High functional characteristics of micro-bubbles and water purification. Resources Processing, 46(4), 238-244. https://doi.org/10.4144/rpsj1986.46.238
105.Ordinola‐Zapata, R., Bramante, C. M., Aprecio, R. M., Handysides, R., & Jaramillo, D. E. (2014). Biofilm removal by 6% sodium hypochlorite activated by different irrigation techniques. International Endodontic Journal, 47(7), 659-666. https://doi.org/10.1111/iej.12202
106.Ortega, M.P. Hagiwara, T., Watanabe, H., & Sakiyama, T. (2008). Factors affecting adhesion of Staphylococcus epidermidis to stainless steel surface. Japan Journal of Food Engineering, (9), 251-259. https://www2.kaiyodai.ac.jp/~tomoaki/images/academic/2008.1.pdf
107.Pagedar, A., Singh, J., & Batish, V. K. (2010). Surface hydrophobicity, nutritional contents affect Staphylococcus aureus biofilms and temperature influences its survival in preformed biofilms. Journal of Basic Microbiology, 50(S1), S98-S106. https://doi.org/10.1002/jobm.201000034
108.Palmer, J., Flint, S., & Brooks, J. (2007). Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology and Biotechnology, 34(9), 577-588. https://doi.org/10.1007/s10295-007-0234-4
109.Panlilio, H., & Rice, C. V. (2021). The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnology and Bioengineering, 118(6), 2129-2141. https://doi.org/10.1002/bit.27760.
110.Park, S. H., & Kang, D. H. (2017). Influence of surface properties of produce and food contact surfaces on the efficacy of chlorine dioxide gas for the inactivation of foodborne pathogens. Food Control, 81, 88-95. https://doi.org/10.1016/j.foodcont.2017.05.015
111.Parmar, R., & Majumder, S. K. (2013). Microbubble generation and microbubble-aided transport process intensification—A state-of-the-art report. Chemical Engineering and Processing: Process Intensification, 64, 79-97. https://doi.org/10.1016/j.cep.2012.12.002
112.Parsek, M. R., & Fuqua, C. (2004). Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. Journal of Bacteriology, 186(14), 4427-4440. https://doi.org/10.1128/jb.186.14.4427-4440.2004
113.Parsek, M. R., & Greenberg, E. P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology, 13(1), 27-33. https://doi.org/10.1016/j.tim.2004.11.007
114.PedersenK. (1990). Biofilm development on stainless steel and PVC surfaces in drinking water. Water Research, 24(2), 239-243. https://doi.org/10.1016/0043-1354(90)90109-J
115.Prouty, A. M., & Gunn, J. S. (2003). Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infection and Immunity, 71(12), 7154-7158. https://doi.org/10.1128/iai.71.12.7154-7158.2003
116.Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493-512. https://doi.org/10.4155/fmc.15.6
117.Raghunathan, D., Wells, T. J., Morris, F. C., Shaw, R. K., Bobat, S., Peters, S. E., Paterson,G. K., & Henderson, I. R. (2011). SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection. Infection and Immunity, 79(11), 4342-4352. https://doi.org/10.1128/iai.05592-11
118.Rainard, P., Foucras, G., Fitzgerald, J. R., Watts, J. L., Koop, G., & Middleton, J. R. (2018). Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transboundary and Emerging Diseases, 65, 149-165.
119.Rebezov, M., Saeed, K., Khaliq, A., Rahman, S. J. U., Sameed, N., Semenova, A., Khayrullin, M., Dydykin,A., Abramov, Y., Thiruvengadam, M., Shariati, M. A., Bangar, S. P., & Lorenzo, J. M. (2022). Application of electrolyzed water in the food industry: a review. Applied Sciences, 12(13), 6639. https://doi.org/10.3390/app12136639
120.Rice, K. C., Mann, E. E., Endres, J. L., Weiss, E. C., Cassat, J. E., Smeltzer, M. S., & Bayles, K. W. (2007). The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proceedings of the National Academy of Sciences, 104(19), 8113-8118. https://doi.org/10.1073/pnas.0610226104
121.Rode T.M., Langsrud S., Holck A., & Møretrø T. (2007). Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. International Journal of Food Microbiology, (3) 372-383. https://doi.org/10.1016/j.ijfoodmicro.2007.02.017
122.Ronner, A. B., & Wong, A. C. (1993). Biofilm development and sanitizer inactivation of Listeria monocytogenes and Salmonella typhimurium on stainless steel and Buna-n rubber. Journal of food Protection, 56(9), 750-758.
123.Ruhal, R., & Kataria, R. (2021). Biofilm patterns in gram-positive and gram-negative bacteria. Microbiological Research, 251, 126829. https://doi.org/10.1016/j.micres.2021.126829
124.Sadovskaya, I., Vinogradov, E., Flahaut, S., Kogan, G., & Jabbouri, S. (2005). Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infection and immunity, 73(5), 3007-3017. https://doi.org/10.1128/iai.73.5.3007-3017.2005
125.Salazar, J. K., Deng, K., Tortorello, M. L., Brandl, M. T., Wang, H., & Zhang, W. (2013). Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce. PLoS One, 8(2), e57272. https://doi.org/10.1371/journal.pone.0057272
126.Sauer, D. B., & Burroughs, R. . (1986). Disinfection of seed surfaces with sodium hypochlorite. Phytopathology, 76(7), 745-749.
127.Sauer. K., Alex. H., Rickard, & David G. Davies. (2007). Biofilms and biocomplexity. American Society for Microbiology, (2), 347-353. http://estore.asm.org
128.Scher, K., Romling, U., & Yaron, S. (2005). Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interface. Applied and Environmental Microbiology, 71(3), 1163-1168. https://doi.org/10.1128/AEM.71.3.1163-1168.2005
129.Schlisselberg, D.B., & Yaron, S. (2013). The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine. Food Microbiology, (35), 65-72. https://doi.org/10.1016/j.fm.2013.02.005
130.Shao, L., Dong, Y., Chen, X., Xu, X., & Wang, H. (2020). Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. Using combined ultrasound and disinfectants. Ultrasonics Sonochemistry, 69, 105269.
131.Sharma, M. & Anand, S.K. (2002). Biofilms evaluation as an essential component of HACCP for food/dairy processing industry – a case. Food Control, 13, 469-477.
132.Sharma, M. & Anand, S.K. (2022). Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol, 19, 627-636. https://doi.org/10.1006/fmic.2002.0472
133.SimõesSimões, L.C., & Vieirab, M.J.M.,. (2010). A review of current and emergent biofilm control strategies. LWT - Food Science and Technology, 43(4), 573-583. https://doi.org/10.1016/j.lwt.2009.12.00
134.Sinde, E., & Carballo, J. (2000). Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiology, 17(4), 439-447.https://doi.org/10.1006/fmic.2000.0339
135.Srey, S., Jahid, I. K., & Ha, S. D. (2013). Biofilm formation in food industries: a food safety concern. Food control, 31(2), 572-585. https://doi.org/10.1016/j.foodcont.2012.12.001
136.Steenackers, H., Hermans, K., Vanderleyden, J., & De Keersmaecker, S. C. (2012). Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Research Internationa, 45(2), 502-531. https://doi.org/10.1016/j.foodres.2011.01.038
137.Stepanović, S., Ćirković, I., Ranin, L., & S vabić‐Vlahović, M. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology, 38(5), 428-432. https://doi.org/10.1111/j.1472-765X.2004.01513.x
138.Sugimoto, S., Sato, F., Miyakawa, R., Chiba, A., Onodera, S., Hori, S., & Mizunoe, Y. (2018). Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and-sensitive strains of Staphylococcus aureus. Scientific Reports, 8(1), 2254. https://doi.org/10.1038/s41598-018-20485-z
139.Sumikura, M., Hidaka, M., Murakami, H., Nobutomo, Y., & Murakami, T. (2007). Ozone micro-bubble disinfection method for wastewater reuse system. Water Science and Technology, 56(5), 53-61. https://doi.org/10.2166/wst.2007.556
140.Sun, X., Bai, J., Ference, C., Wang, Z. H. E., Zhang, Y., Narciso, J. A. N., & Zhou, K. (2014). Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries. Journal of Food Protection, 77(7), 1127-1132
141.Takahashi, M., Ishikawa, H., Asano, T., & Horibe, H. (2012). Effect of microbubbles on ozonized water for photoresist removal. The Journal of Physical Chemistry C, 116, 12578-12583. https://doi.org/10.1021/jp301746g
142.Takahashi, M., Chiba, K., & Li, P. (2007). Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. The Journal of Physical Chemistry B, 111(6), 1343-1347. https://doi.org/10.1021/jp0669254
143.TakahashiM. (2005). ζ potential of microbubbles in aqueous solutions: electrical properties of the gas− water interface. The Journal of Physical Chemistry B, 109(46), 21858-21864. https://doi.org/10.1021/jp0445270
144.TakahashiM. (2009). Base and technological application of micro-bubble and nanobubble. Materials Integration, 22(5), 2-19.
145.Tang, Y. Zhang, M. Zhang, J. Lyu, T. Cooper, M. & Pan,G. (2021). Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation. Water Research, 205, 117657. https://doi.org/10.1016/j.watres.2021.117657
146.Tao, H., Zhou, L., Qi, Y., Chen, Y., Han, Z., & Lin, T. (2023). Variation of microplastics and biofilm community characteristics along the long-distance raw water pipeline. Process Safety and Environmental Protection, 169, 304-312. https://doi.org/10.1016/j.psep.2022.11.021
147.Tresse, O., Shannon, K., Pinon, A., Malle, P., Vialette, M., & Bourdin. G.M. (2007). Variable adhesion of Listeria monocytogenes isolates from food-processing facilities and clinical cases to inert surfaces. Journal of Food Protection , (70), 1569-1578.
148.Trinetta, V., Morgan, M., & Linton, R. (2012). Chlorine dioxide for microbial decontamination of food. In Microbial Decontamination in the Food Industry, pp. 533-562. https://doi.org/10.1533/9780857095756.3.533
149.Van Houdt, R., & Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4), 1117-1131.
150.Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics, 9(2), 59. https://doi.org/10.3390/antibiotics9020059
151.Vestby, L. K., Møretrø, T., Langsrud, S., Heir, E., & Nesse, L. L. (2009). Biofilm forming abilities of Salmonella are correlated with persistence in fish meal-and feed factories. BMC Veterinary Research, 5, 1-6. https://doi.org/10.1186/1746-6148-5-20
152.VoglerA.E. (1998). Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science,, 74(1-3), 69-117. https://doi.org/10.1016/S0001-8686(97)00040-7
153.Wang, H., Ding, S., Wang, G., Xu, X., & Zhou, G. (2013). In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach. International Journal of Food Microbiology, 167, 293-302. https://doi.org/10.1016/j.ijfoodmicro.2013.10.005
154.White, A. P., Gibson, D. L., Kim, W., Kay, W. W., & Surette, M. G. (2006). Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella. Journal of Bacteriology, 188(9), 3219-3227. https://doi.org/10.1128/jb.188.9.3219-3227.2006
155.World Health Organization (WHO). 2018. Salmonella (non-typhoidal). https://www.who.int/news-room/fact sheets/detail/salmonella-(non-typhoidal)
156.World Health Organization (WHO). 2022. Disease Outbreak News; Multi-Country Outbreak of Salmonella Typhimurium Linked to Chocolate Products – Europe and the United States of America. https://www.who.int/emergencies/disease-outbreak-news/item/2022-
157.Wu, J., & Xi, C. (2009). Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Applied and Environmental Microbiology, 75(16), 5390-5395. https://doi.org/10.1128/AEM.00400-09
158.Yang, Y., Mikš-Krajnik, M., Zheng, Q., Lee, S. B., Lee, S. C., & Yuk, H. G. (2016). Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiology, 54, 98-105. https://doi.org/10.1016/j.fm.2015.10.010
159.Young, S. B., & Setlow, P. (2003). Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. Journal of Applied Microbiology, 95(1), 54-67. https://doi.org/10.1046/j.1365-2672.2003.01960.x
160.Yu, H., Liu, Y., Yang, F., Xie, Y., Guo, Y., Cheng, Y., & Yao, W. (2021). Synergistic efficacy of high-intensity ultrasound and chlorine dioxide combination for Staphylococcus aureus biofilm control. Food Control, 122, 107822. https://doi.org/10.1016/j.foodcont.2020.107822
161.Yu, H., Liu, Y., Yang, F., Xie, Y., Guo, Y., Cheng, Y., & Yao, W. (2021). Synergistic efficacy of high-intensity ultrasound and chlorine dioxide combination for Staphylococcus aureus biofilm control. Food Control, 122, 107822. https://doi.org/10.1016/j.foodcont.2020.107822
162.ZagoryD. (2000). Wash water sanitation: how do I compare different systems. In 16th Annual Postharvest Conference & Trade Show, March, pp. 14-1.
163.Zmantar, T., Bettaieb, F., Chaieb, K., Ezzili, B., Mora-Ponsonnet, L., Othmane, A., Jaffrézic, N., & Bakhrouf, A. (2011). Atomic force microscopy and hydrodynamic characterization of the adhesion of Staphylococcus aureus to hydrophilic and hydrophobic substrata at different pH values. World Journal of Microbiology and Biotechnology, 27, 887-896. https://doi.org/10.1007/s11274-010-0531-3
164.Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Römling, U. (2001). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Molecular Microbiol., 39, 1452–1463. https://doi.org/10.1046/j.1365-2958.2001.02337.x