1. 蘇彥庭(2016),支持向量機模型在台灣加權股價指數趨勢之預測。碩士論文,國立中山大學,高雄。2. 簡朝諒(2005),探討影響台股漲跌相關性變數。碩士論文,國立東華大學,花蓮。3. 謝璧而(2018),公司財務績效指標與股價關係之研究-以台灣50成分股為例。碩士論文,國立高雄師範大學,高雄。4. 鄭淑燕(2019),影響台灣金融類股股票報酬因素之研究。碩士論文,朝陽科技大學,臺中。5. 楊彩微(2014),運用投資滿意能力指標於粒子群演算法與交互式人工蜂群演算法建構股票投資組合之比較分析。碩士論文,國立高雄應用科技大學,高雄。6. 黃翊綾(2019),三大法人買賣超、未平倉量與賣買權比率對台指現貨與期貨之影響與關聯性分析。碩士論文,國立屏東大學,屏東。7. 曾俊凱(2015),支持向量機於加權股價指數漲跌分析。碩士論文,國立高雄第一科技大學,高雄。8. 陳博文(2011),結合支援向量機與粒子群最佳化探索台灣股市預測模式。碩士論文,國立臺北科技大學,臺北。9. 陳建凱(2020),每股盈餘成長之宣告對股票報酬之影響-以台灣上市公司為例。碩士論文,國立宜蘭大學,宜蘭。10. 連柏鈞(2018),RapidMiner大數據挖掘應用與案例分析。碩士論文,朝陽科技大學,臺中。11. 張雁婷(2014),產業財務指標對投資績效之影響。碩士論文,中華科技大學,臺北。12. 國發會-景氣指標查詢系統-領先指標https://index.ndc.gov.tw/n/zh_tw/data/eco#/。參考日期:2023/7/23
13. 翁經楷(2012),外資在台股現貨及期貨買賣超對現貨指數漲跌關係之研究。碩士論文,國立臺北大學,新北。14. 紀凱耀(2010),結合粒子群分群法及支持向量機之決策模型應用於台灣加權股價指數交易之研究。碩士論文,明道大學,彰化。.15. 邱嘉豪(2021),基於綜合特徵選擇方法優化投資組合的月交易策略。博士論文,國立臺灣大學,臺北。16. 林玉彬、范鐘升(2014)。領先景氣指標與寶來台灣卓越50基金淨值關係之研究。真理財經學報,(26),53-82。
17. 吳玉筑(2016),傳統績效指標、景氣領先指標與效率綜合性指標之比較探討-台灣股票型基金之實證。碩士論文,朝陽科技大學,臺中。18. Zhang, X., Hu, Y., Xie, K., Wang, S., Ngai, E. W. T., & Liu, M. (2014). A causal feature selection algorithm for stock prediction modeling. Neurocomputing, 142, 48-59.
19. Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions on neural networks, 10(5), 988-999.
20. Tsai, C. F., & Hsiao, Y. C. (2010). Combining multiple feature selection methods for stock prediction: Union, intersection, and multi-intersection approaches. Decision support systems, 50(1), 258-269.
21. TEJ台灣經濟新報資料庫- TEJ籌碼資料庫-三大法人買賣超-資料說明https://www.tej.com.tw/tejdoc/db-document/tw/wtinst1.html。參考日期:2023/7/23
22. TEJ台灣經濟新報資料庫- TEJ衍生性金融商品-期貨-期交所三大法人交易資料-資料說明https://www.tej.com.tw/tejdoc/db-document/tw/wfinst.html。參考日期:2023/7/23
23. TEJ台灣經濟新報資料庫- TEJ股價資料庫-調整股價(月)-除權息調整-資料說明https://www.tej.com.tw/tejdoc/db-document/tw/wim1a.html。參考日期:2023/7/23
24. TEJ台灣經濟新報資料庫- TEJ IFRS Finance -國際會計準則-IFRS 以合併為主簡表(累計)-全產業-資料說明https://www.tej.com.tw/tejdoc/db-document/tw/wim1a.html。參考日期:2023/7/23
25. Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Evolutionary Programming VII: 7th International Conference, EP98 San Diego, California, USA, March 25–27, 1998 Proceedings 7 (pp. 591-600). Springer Berlin Heidelberg.
26. Rezaee Jordehi, A., & Jasni, J. (2013). Parameter selection in particle swarm optimisation: a survey. Journal of Experimental & Theoretical Artificial Intelligence, 25(4), 527-542.
27. Quah, T. S. (2008). DJIA stock selection assisted by neural network. Expert Systems with Applications, 35(1-2), 50-58.
28. Paiva, F. D., Cardoso, R. T. N., Hanaoka, G. P., & Duarte, W. M. (2019). Decision-making for financial trading: A fusion approach of machine learning and portfolio selection. Expert Systems with Applications, 115, 635-655
29. Marinakis, Y., Marinaki, M., Doumpos, M., & Zopounidis, C. (2009). Ant colony and particle swarm optimization for financial classification problems. Expert Systems with Applications, 36(7), 10604-10611.
30. Luo, L., & Chen, X. (2013). Integrating piecewise linear representation and weighted support vector machine for stock trading signal prediction. Applied Soft Computing, 13(2), 806-816.
31. Lin, S. W., Ying, K. C., Chen, S. C., & Lee, Z. J. (2008). Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert systems with applications, 35(4), 1817-1824.
32. Lin, H. T., & Lin, C. J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. Neural Comput, 3(1-32), 16.
33. Lee, M. C. (2009). Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Systems with Applications, 36(8), 10896-10904.
34. Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & operations research, 32(10), 2513-2522.
35. Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert systems with applications, 33(4), 847-856.
36. Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification.
37. Ding, Y., Song, X., & Zen, Y. (2008). Forecasting financial condition of Chinese listed companies based on support vector machine. Expert Systems with Applications, 34(4), 3081-3089.
38. Chen, Y. W., & Lin, C. J. (2006). Combining SVMs with various feature selection strategies. Feature extraction: foundations and applications, 315-324.
39. Chang, J. F., & Hsu, S. W. (2007, September). The construction of stock’s portfolios by using particle swarm optimization. In Second International Conference on Innovative Computing, Information and Control (ICICIC 2007) (pp. 390-390). IEEE.
40. Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and technology (TIST), 2(3), 1-27.
41. Chan, C. L., & Chen, C. L. (2015). A cautious PSO with conditional random. Expert Systems with Applications, 42(8), 4120-4125.
42. Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, 2(2), 121-167.
43. Banks, A., Vincent, J., & Anyakoha, C. (2007). A review of particle swarm optimization. Part I: background and development. Natural Computing, 6, 467-484.