|
[1]A. D. Vos, “Detailed balance limit of the efficiency of tandem solar cells,” J. Phys. Appl. Phys., vol. 13, no. 5, pp. 839–846, May 1980, doi: 10.1088/0022-3727/13/5/018. [2]M. E. Nell and A. M. Barnett, “The spectral p-n junction model for tandem solar-cell design,” IEEE Trans. Electron Devices, vol. 34, no. 2, pp. 257–266, Feb. 1987, doi: 10.1109/T-ED.1987.22916. [3]I. Mathews, D. O’Mahony, B. Corbett, and A. P. Morrison, “Theoretical performance of multi-junction solar cells combining III-V and Si materials,” Opt. Express, vol. 20, no. S5, p. A754, Sep. 2012, doi: 10.1364/OE.20.00A754. [4]R. Strandberg, “Detailed balance analysis of area de-coupled double tandem photovoltaic modules,” Appl. Phys. Lett., vol. 106, no. 3, p. 033902, Jan. 2015, doi: 10.1063/1.4906602. [5]T. Nozawa and Y. Arakawa, “Detailed balance limit of the efficiency of multilevel intermediate band solar cells,” Appl. Phys. Lett., vol. 98, no. 17, p. 171108, Apr. 2011, doi: 10.1063/1.3583587. [6]A. Luque and A. Marti, “Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels,” Phys. Rev. Lett., vol. 78, no. 26, p. 4, 1997. [7]L. D. Landau and E. M. Lifchitz, Physique Statistique. Mir, Moscow, 1967. [8]W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells,” J. Appl. Phys., vol. 32, no. 3, pp. 510–519, Mar. 1961, doi: 10.1063/1.1736034. [9]T. Markvart, “Shockley: Queisser detailed balance limit after 60 years,” WIREs Energy Environ., Mar. 2022, doi: 10.1002/wene.430. [10]“Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe | Wiley,” Wiley.com. https://www.wiley.com/en-gb/Properties+of+Advanced+Semiconductor+Materials%3A+GaN%2C+AIN%2C+InN%2C+BN%2C+SiC%2C+SiGe-p-9780471358275 (accessed Jun. 07, 2022). [11]K.-F. Chen and C.-L. Hung, “Numerical study of InGaN tandem solar cells with intermediate bands,” Phys. Status Solidi RRL - Rapid Res. Lett., vol. 11, no. 2, p. 1600429, Feb. 2017, doi: 10.1002/pssr.201600429. [12]A. Onton and R. J. Chicotka, “Conduction Bands in In1−xAlxP,” J. Appl. Phys., vol. 41, no. 10, pp. 4205–4207, Sep. 1970, doi: 10.1063/1.1658438. [13]K. Tamura, S. Watahiki, T. Kitatani, H. Ohtsuka, and T. Warabisako, “Three-junction Solar cells comprised of a thin-film GalnP/GaAs tandem cell mechanically stacked on a Si cell”, p. 4. [14]Z. Q. Li, Y. G. Xiao, and Z. M. S. Li, “Two‐dimensional simulation of GaInP/GaAs/Ge triple junction solar cell,” Phys. Status Solidi C, vol. 4, no. 5, pp. 1637–1640, Apr. 2007, doi: 10.1002/pssc.200674271. [15]C. Feser, J. Lacombe, K. v. Maydell, and C. Agert, “A simulation study towards a new concept for realization of thin film triple junction solar cells based on group IV elements,” Prog. Photovolt. Res. Appl., vol. 20, no. 1, pp. 74–81, Jan. 2012, doi: 10.1002/pip.1114. [16]J.-L. Hou, S.-J. Chang, T.-J. Hsueh, C.-H. Wu, W.-Y. Weng, and J.-M. Shieh, “InGaP/GaAs/Ge triple-junction solar cells with ZnO nanowires,” Prog. Photovolt: Res. Appl. 2013; 21:1645 – 1652, doi: 10.1002/pip.2304. [17]Y. Ahn, Y.-H. Kim, and S.-I. Kim, “Detailed Balance Calculation of a Novel Triple-Junction Solar Cell Structure,” IEEE J. Photovolt., vol. 3, no. 4, pp. 1403–1408, Oct. 2013, doi: 10.1109/JPHOTOV.2013.2262373. [18]J. Yang, Z. Peng, D. Cheong, and R. Kleiman, “Fabrication of High-Efficiency III–V on Silicon Multijunction Solar Cells by Direct Metal Interconnect,” IEEE J. Photovolt., vol. 4, no. 4, pp. 1149–1155, Jul. 2014, doi: 10.1109/JPHOTOV.2014.2313225. [19]J.-W. Schuttauf, G. Bugnon, M. Stuckelberger, S. Hanni, M. Boccard, M. Despeissem F.-J. Haug, F. Meillaud, and C. Ballif , “Thin-Film Silicon Triple-Junction Solar Cells on Highly Transparent Front Electrodes With Stabilized Efficiencies up to 12.8%,” IEEE J. Photovolt., vol. 4, no. 3, pp. 757–762, May 2014, doi: 10.1109/JPHOTOV.2014.2307162. [20]S. Essig, J. Benick, M. Schachtner, A. Wekkeli, M. Hermle, and F. Dimroth, “Wafer-Bonded GaInP/GaAs//Si Solar Cells With 30% Efficiency Under Concentrated Sunlight,” IEEE J. Photovolt., vol. 5, no. 3, pp. 977–981, May 2015, doi: 10.1109/JPHOTOV.2015.2400212. [21]P. Sathya and R. Natarajan, “Numerical simulation and performance measure of highly efficient GaP/InP/Si multi-junction solar cell: Numerical simulation,” Int. J. Energy Res., vol. 41, no. 8, pp. 1211–1222, Jun. 2017, doi: 10.1002/er.3708. [22]R. Cariou, J. Benick, P. Beutel, N. Razek, C. Flotgen, M. Hermle, D. Lackner,S.-W. Glunz, S. Member, A.-W. Bett, M. Wimplinger, and F. Dimroth, “Monolithic Two-Terminal III–V//Si Triple-Junction Solar Cells With 30.2% Efficiency Under 1-Sun AM1.5g,” IEEE J. Photovolt., vol. 7, no. 1, pp. 367–373, Jan. 2017, doi: 10.1109/JPHOTOV.2016.2629840. [23]M. Feifel , J. Ohlmann , J. Benick , M. Hermle, J. Belz, A. Beyer, K. Volz, T. Hannappel , A.-W. Bett, D. Lackner, and F. Dimroth, “Direct Growth of III–V/Silicon Triple-Junction Solar Cells With 19.7% Efficiency,” IEEE J. Photovolt., vol. 8, no. 6, pp. 1590–1595, Nov. 2018, doi: 10.1109/JPHOTOV.2018.2868015. [24]M. Schnabel, M. Rienacker, E.-L. Warren, J.-F. Geisz, R. Peibst,P. Stradins, and A.-C. Tamboli, “Equivalent Performance in Three-Terminal and Four-Terminal Tandem Solar Cells,” IEEE J. Photovolt., vol. 8, no. 6, pp. 1584–1589, Nov. 2018, doi: 10.1109/JPHOTOV.2018.2865175. [25]N. Shigekawa, T. Hara, T. Ogawa, J. Liang, T. Kamioka, K. Araki, and M. Yamaguchi, “GaAs/Indium Tin Oxide/Si Bonding Junctions for III-V-on-Si Hybrid Multijunction Cells With Low Series Resistance,” IEEE J. Photovolt., pp. 1–8, 2018, doi: 10.1109/JPHOTOV.2018.2802203. [26]M. Imaizumi, T. Takamoto, H. Sugimoto, T. Ohshima, and S. Kawakita, “Preliminary Study on Super Radiation-Resistant Mechanical-Stack Triple-Junction Space Solar Cell: PHOENIX,” in 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, Jun. 2019, pp. 1495–1498. doi: 10.1109/PVSC40753.2019.8980537. [27]Markus Feifel, David Lackner, Jens Ohlmann, Jan Benick, Martin Hermle, and Frank Dimroth, “Direct Growth of a GaInP/GaAs/Si Triple-Junction Solar Cell with 22.3% AM1.5g Efficiency”, Sol. RRL 2019, 3, 1900313. [28]N. Miyashita, Y. He, T. Agui, H. Juso, T. Takamoto, and Y. Okada, “Inverted Lattice-Matched Triple Junction Solar Cells With 1.0 eV GaInNAsSb Subcell by MOCVD/MBE Hybrid Growth,” IEEE J. Photovolt., vol. 9, no. 3, pp. 666–672, May 2019, doi: 10.1109/JPHOTOV.2019.2895807. [29]D. Lackner, O. Höhn, R. Müller, P. Beutel, P. Schygulla, H. Hauser, F. Predan, G. Siefer, M. Schachtner, J. Schon,J. Benick, M. Hermle, and F. Dimroth, “Two‐Terminal Direct Wafer‐Bonded GaInP/AlGaAs//Si Triple‐Junction Solar Cell with AM1.5g Efficiency of 34.1%,” Sol. RRL, vol. 4, no. 9, p. 2000210, Sep. 2020, doi: 10.1002/solr.202000210. [30]Patrick Schygulla, R.Müller, D. Lackner, O. Hohn, H. Hauser, B. Blasi, F. Predan, J. Benick, M. Hermle, S.-W. Glunz, and F. Dimroth, “Two-terminal III – V//Si triple-junction solar cell with power conversion efficiency of 35.9 % at AM1.5g”, Prog Photovolt Res Appl. 2022;30:869 – 879, doi: 10.1002/pip.3503. [31]P. Schygulla, F. D. Heinz, F. Dimroth, and D. Lackner, “Middle Cell Development for Wafer-Bonded III-V//Si Tandem Solar Cells,” IEEE J. Photovolt., vol. 11, no. 5, pp. 1264–1270, Sep. 2021, doi: 10.1109/JPHOTOV.2021.3090159. [32]M. Feifel, D. Lackner, J. Schon, J. Ohlmann, J. Benick, G. Siefer, F. Predan, M. Hermle, and F. Dimroth, “Epitaxial GaInP/GaAs/Si Triple-Junction Solar Cell with 25.9% AM1.5g Efficiency Enabled by Transparent Metamorphic AlxGa1-xAsyP1-y Step-Graded BufferStructures”, Sol. RRL,2021, 5, 2000763doi:10.1002/solr.202000763
|