|
[1]Y. Kuo, Reactive Ion Etching of PECVD Amorphous Silicon and Silicon Nitride Thin Films with Fluorocarbon Gases, J. Electrochem. Soc. 137 (1990) 1235-1239. [2]S. Y. Hou, W. C. Chen, C. Hu, C. Chiu, K. C. Ting, T. S. Lin, W. H. Wei, W. C. Chiou, V. J. C. Lin, and V. C. Y. Chang, Wafer-level integration of an advanced logic-memory system through the second-generation CoWoS technology, IEEE Trans Electron Devices 64 (2017) 4071-4077. [3]T. Sasaki, K. Yoshikawa, K, Furumoto, Silver film etching using halogen gas plasma, J. Vac. Sci. Technol. A 38 (2020) 053006. [4]W. L. Perry, K. Waters, M. Barela, Oxide etch behavior in a high-density, low-pressure, inductively coupled C2F6 plasma: Etch rates, selectivity to photoresist, plasma parameters, and CFx radical densities, J. Vac. Sci. Technol. A 19 (2001) 2272-2281 [5]http://www.gptc.com.tw/tw/product/product_detail-16 [6]S. W. Yoo, N. M. Hwang, S. J. You, and J. H. Kim, Control of nano-particle size and amount by using the mesh grid and applying DC-bias to the substrate in silane ICP-CVD process, J Nanopart Res 19 (2017) 243-247. [7]陳婉儀,新竹市:工業技術研究院產業經濟與資訊服務中心,半導體工業年鑒,(2017)。 [8]I. B. Ivasenko, V. M. Posuvailo, H. H. Veselivs'ka, A. Y. Pokhmurs'kyi, Y. Y. Sirak, V. M. Yus'kiv, Influence of the porosity of a plasma-electrolytic coating on the corrosion resistance of d16 alloy, Mater. Sci. Eng. C 54 (2019) 899-906. [9]O. O. Ajayi, R. H. Lee, R. E. Cook, Plasma-etching of structural ceramics for microstructural analysis, Mater. Sci. Eng. A 169 (1993) 1-2. [10]H. Fukumoto, I. Fujikake, Y. Takao, K. Eriguchi, K. Ono, Plasma chemical behavior of reactants and reaction products during inductively coupled CF4 plasma etching of SiO2, Plasma Sources Sci Technol 18 (2009) 045027. [11]A. P. Han, B. D. Chang, M. Todeschini, i, H. T. Le, W. Tiddi, Inductively coupled plasma nanoetching of atomic layer deposition alumina, Microelectron Eng. 193 (2018) 28-33. [12]Y. Xue, D. S. Um, C. I. Kim, The etching characteristics of Al2O3 thin films in an inductively coupled plasma, Thin Solid Films 518 (2010) 6441-6445. [13]S. Tegen, P. Moll, Etch characteristics of Al2O3 in ICP and ERIE plasma etchers, J. Electrochem. Soc. 152 (2005) 271-276. [14]F. Yan , Z. T. Liu, W. T. Liu, The properties of the Y2O3 films exposed at elevated temperature, Physica B Condens. Matter 406 (2011) 2827-2833. [15]J. Iwasawa, R. Nishimizu, M. Tokita, M. Kiyohara, K. Uematsu, Plasma-Resistant Dense Yttrium Oxide Film Prepared by Aerosol Deposition Process, J. Am. Ceram. Soc. 90 (2007) 2327-2332. [16]X. Y. Huang, X. Zhang, Z. W. Hu, Y. G. Feng, J. B. Wei, X. Liu, X. Y. Lia, H. H. Chen, L. X. Wu, H. G. Pan, J. Li, Fabrication of Y2O3 transparent ceramics by hot isostatic pressing from precipitated nanopowders, Opt. Mater. 92 (2019) 359-365. [17]https://www.kyocera.com.cn/prdct/fc/product/pdf/material.pdf [18]C. S. Kim, M. J. Kim, H. Cho, T. E. Park, Y. H. Yun, Fabrication and plasma resistance of Y2O3 ceramics, Ceram. Int. 41 (2015) 12757-12762. [19]Y. C. Tan, J. T. Zhang, P. Chen, S. H. Wu, Z. Tian, Zirconia-strengthened yttria ceramics for plasma chamber applications, Ceram. Int. 47 (2021) 7448-7456. [20]L. H. Lin, K. Morita, T. S. Suzuki, B. N. Kim, Effect of volume ratio on optical and mechanical properties of Y2O3-MgO composites fabricated by spark-plasma-sintering process, J. Eur. Ceram. Soc. 41 (2021) 2096-2105. [21]J. Wang, D. Chen, E. H. Jordan, M. Gell, Infrared-Transparent Y2O3-MgO Nanocomposites Using Sol-Gel Combustion Synthesized Powder, J. Am. Ceram. Soc. 93 (2010) 3535-3538 [22]N. Jehanathan, V. Georgieva, M. Saraiva, D. Depla, A. Bogaerts, G. Van Tendeloo, The influence of Cr and Y on the micro structural evolution of Mg-Cr-O and Mg-Y-O thin films, Thin Solid Films 519 (2011) 5388-5396. [23]https://www.junhongopt.com/service_detail?item=4 [24]https://www.steeldata.info/semi/demo/data/8498.html [25]S. Sivakumar, P. Sooundhirarajan, A. Venkatesan, C. P. Khatiwada, Syn-thesis, characterization and anti-bacterial activities of pure and Co-doped BaSO4 nanoparticles via chemical precipitation route Spectrochim, Acta A Mol. Biomol. Spectrosc. 137 (2015) 137-147 [26]W. K. Wang, S. Y. Wang, K. F. Liu, P. C. Tsai, Y. H. Zhang and S. Y. Huang, Plasma Etching Behavior of SF6 Plasma Pre-Treatment Sputter-Deposited Yttrium Oxide Films, Coatings. 10 (2020) 3390 [27]L. Fan, M. Liu, Y. L. Wang, H. B. Cui, X. D. Ren, B. Xin, Microstructure mechanical properties and corrosion behavior of Ce doped TiN films, Appl. Sur. Sci. 575 (2022) 151770. [28]H. M. Du, P. Liu, W. Li, K. Zhang, F. C. Ma, X. K. Liu, X. H. Chen, D.H. He, Microstructure and mechanical properties of TiSiNiN nanocomposite films, Thin Solid Films 697 (2020) 137795. [29]W. Li, P. Liu, S. Zhao, K. Zhang, F. C. Ma, X. K. Liu, X. H. Chen, D. H. He, Microstructural evolution mechanical properties and streng-thening mechanism of TiN/Ni nanocomposite film, J. Alloys Compd. 691 (2017) 159-164. [30]S. S. Li, H. B. Chen, W. D. Wang, D. X. Yao, Y. F. Xia, Y. P. Zeng, Effects of Y2O3/MgO ratio on mechanical properties and thermal conductivity of silicon nitride ceramics, Int. J. Appl. Ceram. Technol. 19 (2022) 2873-2882. [31]J. Y. Yi, S. Y. Chen, K. H. Chen, Y. C. Xu, Q. Chen, C. J. Zhu, L. Liu, Effects of Ni content on microstructure, mechanical properties and Inconel 718 cutting performance of AlTiN-Ni nanocomposite coatings, Ceram. Int. 45 (2019) 474-480. [32]L. H. Liu, K. Morita, T. S. Suzuki, B. N. Kim, Evolution of micro-structure, mechanical and optical properties of Y2O3-MgO nano-composites fabricated by high pressure spark plasma sintering, J. Eur. Ceram. Soc. 40 (2020) 4547-4555. [33]X. Liu, J. L. Li, X. W. Yu, H. W. Fan, Q. Wang, S. Yan, L. Wang, W. Jiang, Graphene nanosheet/titanium carbide composites of a fine-grained structure and improved mechanical properties, Ceram. Int. 42 (2016) 165-172. [34]R. Akhter, A. Bendavid, P. Munroe, Effect of Ni content on the micro-structure and mechanical properties of TiNiN coatings, Appl. Surf. Sci. 573 (2022) 151536. [35]W. Li, P. Liu, X. D. Zhu, D.Pan, K. Zhang, F. C. Ma, X. K. Liu, Effect of Si content on microstructural evolution and superhardness effect of TiN/CrAlSiN nanomultilayered films, J. Alloys Compd. 650 (2015) 592-597. [36]H. J. Ma, W. K. Jung, C. Y. Baek, D. K. Kim, Influence of micro-structure control on optical and mechanical properties of infrared transparent Y2O3-MgO nanocomposite, J. Eur. Ceram. Soc. 37 (2017) 4902-4911. [37]C. dos S. Bezerra, M. E. G. Valerio, Structural and optical study of CaF2 nanoparticles produced by a microwave-assisted hydrothermal method, Phys. Rev. B 501 (2016) 106-112. [38]I. H. Lee, T. Y. Lee, S. M. Hwang, C. W. Chung, Etch characteristics of MgO thin films in Cl2/Ar, CH3OH/Ar and CH4/Ar plasmas, Vacuum. 101 (2014) 394-398. [39]W. K. Wang, S. Y. Wang, Y. H. Zhang, S. Y. Huang, Passivation effect on the surface characteristics and corrosion properties of yttrium oxide films undergoing SF6 plasma treatment, Ceram. Int. 48 (2022) 19824-19830. [40]Y. Kasashima, K. Tsutsumi, S. Mitomi, F. Uesugi, Development and evaluation of magnesium oxide-based ceramics for chamber parts in mass-production plasma etching equipment, Jap. J. App. Phys. 56 (2017) 06HC01. [41]J. J Xia, W. P. Liang, Q. Maio, D. Depla, The effect of energy and momentum transfer during magnetron sputter deposition of yttrium oxide thin films, Appl Surf Sci. 439 (2018) 545-551. [42]J. Xu, Q. Yung, M. S. Javed, Y. Gong, M. K. Aslam, C. Chen, The effects of NaF concentration on electrochemical and corrosion behavior of AZ31B magnesium alloy in a composite electrolyte, RSC Adv. 7 (2017) 5880-5887. [43]M. Kindelmann, M. Stamminger, et al, Erosion behavior of Y2O3 in fluorine-based etching plasmas: Orientation dependency and reaction layer formation, J. Am. Ceram. Soc. 104 (2021) 1465-1474. [44]W. K. Wang, Y. H. Chang, C. F. Jung, S. Y. Huang, P. C. Tsai, Micro-structural characterization, mechanical properties and erosion behavior of Y2O3-MgO nanocomposite films by magnetron sputtering, Ceram. Int. 49 (2023) 13872-13877. [45]H. Ashizawa, K. Yoshida, Investigation of fluoride layer of yttria coatings prepared by aerosol deposition method, J. Cream. Soc. Jpn. 129 (2021) 46-53. [46]K. Miwa, N. Takada, K. Sasaki, Fluorination mechanisms of Al2O3 and Y2O3 surfaces irradiated by high-density CF4/O2 and SF6/O2 plasmas, J. Vac. Sci. Technol. A 27 (2009) 831-835. [47]Y. Kasashima , T. Ikeda, T. Tabaru, Decrease in Particles by Substituting Conductive Magnesium-Oxide Based Ceramics for Conventional Electrode Materials Used in Process Chamber of Plasma Etching, IEEE Trans. Semicond. Manuf. 34 (2021) 224-226. [48]H. J. Ma, S. Hong, H. M. Oh, K. Kumar, M. J. Kim, H. N. Kim, J. W. Ko, J. W. Lee, H. C. Lee, and Y. J. Park, Correlation with the Microstructure and Synergistic Physiochemical Etching Resistance of Nanocomposites under Fluorine-Containing Plasma Conditions, ACS Appl. Mater. Inter-faces 14 (2022) 43771-43782. [49]G. Cunge, B. Pelissier, O. Joubert, R. Ramos and C. Maurice, New chamber walls conditioning and cleaning strategies to improve the stability of plasma processes, Plasma Sources Sci Technol 14 (2005) 599-609 [50]S. J. Ullal, A. R. Godfrey, E. Edelberg, L. Braly, V.Vahedi and S. Aydil, Effect of chamber wall conditions on Cl and Cl2 concentrations in an inductively coupled plasma reactor, J. Vac. Sci. Technol. A 20 (2002) 43-52. [51]G. Cunge, O. Joubert and N. Sadeghi, Enhancement of the recom-bination rate of Br atoms by CF4 addition and resist etching in HBr/Cl2/O2 plasmas, J. Appl. Phys. 94 (2003) 6285-6290.
|