|
[1]M. Sokoluk, C. Cao, S. Pan, X. Li, Nanoparticle-enabled phase control for arc welding of unweldable aluminum alloy 7075, Nature communications, 10(1), pp. 98, 2019. [2]S. Kim, C. G. Lee, S.-J. Kim, Fatigue crack propagation behavior of friction stir welded 5083-H32 and 6061-T651 aluminum alloys, Materials Science and Engineering: A, 478(1), pp. 56–64, 2008. [3]M. Cabibbo, H. J. McQueen, E. Evangelista, S. Spigarelli, M. Di Paola, A. Falchero, Microstructure and mechanical property studies of AA6056 friction stir welded plate, Materials Science and Engineering: A, 460–461, pp. 86–94, 2007. [4]Joseph R. Davis, Alloying: Understanding the Basics. 1st Edition, ASM International, Netherlands, 2001. [5]R. V. Vignesh, R. Padmanaban, C. K, Soft computing model for analysing the effect of friction stir processing parameters on the intergranular corrosion susceptibility of aluminium alloy AA5083, KOM – Corrosion and Material Protection Journal, 62(3), pp. 97–107, 2018. [6]M. S. Haque, M. Nomani, A. Akter, I. A. Ovi, Synergistic effect of Mg addition on the enhancement of the mechanical properties and evaluation of corrosion behaviors in 3.5 wt % NaCl of aluminum alloys, Heliyon, 10(3), pp. e25437, 2024. [7]Z. Huang, K. Wang, Z. Zhang, B. Li, H. Xue, D. Yang, Effects of Mg content on primary Mg2Si phase in hypereutectic Al–Si alloys, Transactions of Nonferrous Metals Society of China, 25(10), pp. 3197–3203, 2015. [8]A. Akrami, N. Nasiri, V. Kulish, Fractal dimension analysis of Mg2Si particles of Al–15%Mg2Si composite and its relationships to mechanical properties, Results in Materials, 7, pp. 100118, 2020. [9]H. Kang, X. Li, Y. Su, D. Liu, J. Guo, H. Fu, 3-D morphology and growth mechanism of primary Al6Mn intermetallic compound in directionally solidified Al-3at.%Mn alloy, Intermetallics, 23, pp. 32–38, 2012. [10]K. Liu, A. M. Nabawy, X. G. Chen, Influence of TiB2 nanoparticles on elevated-temperature properties of Al-Mn-Mg 3004 alloy, Transactions of Nonferrous Metals Society of China, 27(4), pp. 771–778, 2017. [11]Y. Zhao, et al. Revealing the nucleation and growth mechanisms of Fe-rich phases in Al–Cu–Fe(-Si) alloys under the influence of Al–Ti–B, Intermetallics, 146, pp. 107584, 2022. [12]Y. Zhao, et al. Revealing the influence of Fe on Fe-rich phases formation and mechanical properties of cast Al-Mg-Mn-Fe alloys, Journal of Alloys and Compounds, 901, pp. 163666, 2022. [13]M. Zhang, et al. Achieving excellent strength-ductility in Al–Si–Cu–Mg cast alloy via effective work hardening, Materials Science and Engineering: A, 889, pp. 145840, 2024. [14]H. Jamshidi aval, Effects of aging heat treatment on microstructure and corrosion behavior of friction surfacing treated Al–Zn–Mg–Cu matrix composite, Transactions of Nonferrous Metals Society of China, 33(8), pp. 2303–2313, 2023. [15]W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith, C. J. Dawes, Friction welding, Patent US5460317A, 1995. [16]P L Threadgill, A J Leonard, H R Shercliff and P J Withers, Friction stir welding of aluminium alloys, 1st Edition, SAGE Publications, 2009. [17]R. Bertrand, H. Robe, D. Texier, Y. Zedan, E. Feulvarch, P. Bocher, Analysis of AA2XXX/AA7XXX friction stir welds, Journal of Materials Processing Technology, 271, pp. 312–324, 2019. [18]D. Ambrosio, Y. Morisada, K. Ushioda, H. Fujii, Material flow in friction stir welding: A review, Journal of Materials Processing Technology, 320, pp. 118116, 2023. [19]N. Balasubramanian, R. S. Mishra, K. Krishnamurthy, Friction stir channeling: Characterization of the channels, Journal of Materials Processing Technology, 209(8), pp. 3696–3704, 2009. [20]H. A. Rubisoff, J. A. Schneider, A. C. Nunes, et al. Control of structure in conventional friction stir welds through a kinematic theory of metal flow, The Minerals, Metals & Materials Society, 2009. [21]P. Maji, R. Karmakar, R. Kanti Nath, P. Paul, An overview on friction stir welding/processing tools, Materials Today: Proceedings, 58, pp. 57–64, 2022. [22]G. Wang, Y. Zhao, Y. Haoet al. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing, Journal of Materials Science & Technology, 34(1), pp. 73–91, 2018. [23]X. Wang, Y. Morisada, H. Fujii, Flat friction stir spot welding of low carbon steel by double side adjustable tools, Journal of Materials Science & Technology, 66, pp. 1–9, 2021. [24]G. Li, et al. Semi-stationary shoulder bobbin-tool: A new approach in tailoring macrostructure and mechanical properties of bobbin-tool friction stir welds in magnesium alloy, Journal of Materials Processing Technology, 317, pp. 117984, 2023. [25]S. Lim, S. Kim, C.-G. Lee, S. Kim, Tensile behavior of friction-stir-welded A356-T6/Al 6061-T651 bi-alloy plate, Metall Mater Trans A, 35(9), pp. 2837–2843, 2004. [26]M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, A. C. Nunes, Flow patterns during friction stir welding, Materials Characterization, volume 49(2), pp. 95–101, 2002. [27]C. Yang, et al. Material flow during dissimilar friction stir welding of Al/Mg alloys, International Journal of Mechanical Sciences, 272, pp. 109173, 2024. [28]K. N. Krishnan, On the formation of onion rings in friction stir welds, Materials Science and Engineering: A, 327(2), pp. 246–251, 2002. [29]L. Fratini, G. Buffa, CDRX modelling in friction stir welding of aluminium alloys, International Journal of Machine Tools and Manufacture, 45(10), pp. 1188–1194, 2005. [30]F. He, C. Wu, L. Shi, Phase-field simulation of dynamic recrystallization in friction stir weld nugget zone of dissimilar Al/Mg alloys, Journal of Materials Research and Technology, 27, pp. 2670–2683, 2023. [31]F. J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd Edition, Elsevier, Oxford, pp. 333–378, 2004. [32]G. Buffa, L. Fratini, R. Shivpuri, CDRX modelling in friction stir welding of AA7075-T6 aluminum alloy: Analytical approaches, Journal of Materials Processing Technology, 191(1), pp. 356–359, 2007. [33]J. Zhao, Y. Deng, J. Tang, Grain refining with DDRX by isothermal MDF of Al-Zn-Mg-Cu alloy, Journal of Materials Research and Technology, 9(4), pp. 8001–8012, 2020. [34]M. Kumar, A. Das, R. Ballav, Influence of the Zn interlayer on the mechanical strength, corrosion and microstructural behavior of friction stir-welded 6061-T6 aluminium alloy and AZ61 magnesium alloy dissimilar joints, Materials Today Communications, 35, pp. 105509, 2023. [35]H. Zhang, B. Zhang, C. Li, Y. Wang, Q. Gao, Strengthening characteristic and mechanism of AlCoCrFeNi high-entropy alloy particles for Al-Cu dissimilar friction stir lap welded joint, Materials Characterization, 203, pp. 113153, 2023. [36]S. S. Mirjavadi, et al. Influence of TiO2 nanoparticles incorporation to friction stir welded 5083 aluminum alloy on the microstructure, mechanical properties and wear resistance, Journal of Alloys and Compounds, 712, pp. 795–803, 2017. [37]L.P. Borrego, et al. Fatigue life improvement by friction stir processing of 5083 aluminium alloy MIG butt welds, Theoretical and Applied Fracture Mechanics, 70, pp. 68-74, 2014. [38]B.D.Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd Edition, Prentice Hall, Upper Saddle River, New Jersey, 2001. [39]John J. Friel, X-ray and Image Analysis in Electron Microscopy, 1st Edition, Princeton Gamma-Tech, 1995. [40]H. Zhu, Z. Huang, G. Jin, M. Gao, Effect of temperature on galvanic corrosion of Al 6061-SS 304 in nitric acid, Energy Reports, 8, pp. 112–123, 2022. [41]Denny A.Jones, Principles and Prevention of Corrosion, 2nd Edition, pearson, 1995. [42]M. Amin, N. El-Bagoury, M. Saracoglu, M. Ramadan, Electrochemical and Corrosion Behavior of cast Re-containing Inconel 718 Alloys in Sulphuric Acid Solutions and the Effect of Cl-, International journal of electrochemical science, 9, 2014. [43]C.-Y. Chen, W.-S. Hwang, Effect of Annealing on the Interfacial Structure of Aluminum-Copper Joints, Materials Transactions, 48(7), pp. 1938–1947, 2007.
|