|
References 1.Tsukasaki, M., RANKL and osteoimmunology in periodontitis. J Bone Miner Metab, 2021. 39(1): p. 82-90. 2.Loos, B.G. and T.E. Van Dyke, The role of inflammation and genetics in periodontal disease. Periodontol 2000, 2020. 83(1): p. 26-39. 3.Nazir, M., et al., Global Prevalence of Periodontal Disease and Lack of Its Surveillance. ScientificWorldJournal, 2020. 2020: p. 2146160. 4.Beck, J.D., Methods of Assessing Risk for Periodontitis and Developing Multifactorial Models. J Periodontol, 1994. 65 Suppl 5S: p. 468-478. 5.Arigbede, A.O., B.O. Babatope, and M.K. Bamidele, Periodontitis and systemic diseases: A literature review. J Indian Soc Periodontol, 2012. 16(4): p. 487-91. 6.Kwon, T., I.B. Lamster, and L. Levin, Current Concepts in the Management of Periodontitis. Int Dent J, 2021. 71(6): p. 462-476. 7.Sanz, M., et al., Treatment of stage I-III periodontitis-The EFP S3 level clinical practice guideline. J Clin Periodontol, 2020. 47 Suppl 22(Suppl 22): p. 4-60. 8.Graziani, F., et al., Nonsurgical and surgical treatment of periodontitis: how many options for one disease? Periodontol 2000, 2017. 75(1): p. 152-188. 9.Akram, Z., et al., Efficacy of bisphosphonate as an adjunct to nonsurgical periodontal therapy in the management of periodontal disease: a systematic review. Br J Clin Pharmacol, 2017. 83(3): p. 444-454. 10.Tonetti, M.S., H. Greenwell, and K.S. Kornman, Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol, 2018. 89 Suppl 1: p. S159-S172. 11.Caton, J.G., et al., A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification. J Clin Periodontol, 2018. 45 Suppl 20: p. S1-S8. 12.Harrel, S.K., et al., Calculus as a Risk Factor for Periodontal Disease: Narrative Review on Treatment Indications When the Response to Scaling and Root Planing Is Inadequate. Dent J (Basel), 2022. 10(10). 13.Van Dyke, T.E., Shifting the paradigm from inhibitors of inflammation to resolvers of inflammation in periodontitis. J Periodontol, 2020. 91 Suppl 1(Suppl 1): p. S19-S25. 14.Kim, J. and S. Amar, Periodontal disease and systemic conditions: a bidirectional relationship. Odontology, 2006. 94(1): p. 10-21. 15.Huang, R.Y., et al., Silibinin alleviates inflammation-induced bone loss by modulating biological interaction between human gingival fibroblasts and monocytes. J Periodontol, 2023. 94(7): p. 905-918. 16.AlQranei, M.S. and M.A. Chellaiah, Osteoclastogenesis in periodontal diseases: Possible mediators and mechanisms. J Oral Biosci, 2020. 62(2): p. 123-130. 17.Li, B., et al., Roles of the RANKL-RANK Axis in Immunity-Implications for Pathogenesis and Treatment of Bone Metastasis. Front Immunol, 2022. 13: p. 824117. 18.Sojod, B., et al., RANK/RANKL/OPG Signalization Implication in Periodontitis: New Evidence from a RANK Transgenic Mouse Model. Front Physiol, 2017. 8: p. 338. 19.Cekici, A., et al., Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000, 2014. 64(1): p. 57-80. 20.Hajishengallis, G., T. Chavakis, and J.D. Lambris, Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000, 2020. 84(1): p. 14-34. 21.Van Dyke, T.E., P.M. Bartold, and E.C. Reynolds, The Nexus Between Periodontal Inflammation and Dysbiosis. Front Immunol, 2020. 11: p. 511. 22.Avula, H. and Y. Chakravarthy, Models of periodontal disease pathogenesis: A journey through time. J Indian Soc Periodontol, 2022. 26(3): p. 204-212. 23.Martinez-Garcia, M. and E. Hernandez-Lemus, Periodontal Inflammation and Systemic Diseases: An Overview. Front Physiol, 2021. 12: p. 709438. 24.Van Dyke, T.E., The management of inflammation in periodontal disease. J Periodontol, 2008. 79(8 Suppl): p. 1601-8. 25.Oliveira-Costa, J.F., et al., Anti-Inflammatory Activities of Betulinic Acid: A Review. Front Pharmacol, 2022. 13: p. 883857. 26.Rodrigues, G.C.S., et al., Antimicrobial Potential of Betulinic Acid and Investigation of the Mechanism of Action against Nuclear and Metabolic Enzymes with Molecular Modeling. Pathogens, 2023. 12(3). 27.Günther, A., et al., Enhancement of the Antioxidant and Skin Permeation Properties of Betulin and Its Derivatives. Molecules, 2021. 26(11). 28.Adepoju, F.O., et al., Pharmacological Potential of Betulin as a Multitarget Compound. Biomolecules, 2023. 13(7). 29.Laavola, M., et al., Betulin Derivatives Effectively Suppress Inflammation in Vitro and in Vivo. J Nat Prod, 2016. 79(2): p. 274-80. 30.Ferreira Jr, L.H., Jr., et al., Bisphosphonate-associated osteonecrosis of the jaw. Minerva Dent Oral Sci, 2021. 70(1): p. 49-57. 31.Kim, E.N. and G.S. Jeong, Inhibitory Effect of Periodontitis through C/EBP and 11beta-Hydroxysteroid Dehydrogenase Type 1 Regulation of Betulin Isolated from the Bark of Betula platyphylla. Pharmaceutics, 2022. 14(9). 32.Edgar, R., M. Domrachev, and A.E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res, 2002. 30(1): p. 207-10. 33.Kramer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2014. 30(4): p. 523-30. 34.Abdulkareem, A.A., et al., Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol, 2023. 15(1): p. 2197779. 35.Chen, J., et al., The Roles of c-Jun N-Terminal Kinase (JNK) in Infectious Diseases. Int J Mol Sci, 2021. 22(17). 36.Maik-Rachline, G., A. Hacohen-Lev-Ran, and R. Seger, Nuclear ERK: Mechanism of Translocation, Substrates, and Role in Cancer. Int J Mol Sci, 2019. 20(5). 37.Jeong, D.H., et al., Betulinic Acid Inhibits RANKL-Induced Osteoclastogenesis via Attenuating Akt, NF-kappaB, and PLCgamma2-Ca(2+) Signaling and Prevents Inflammatory Bone Loss. J Nat Prod, 2020. 83(4): p. 1174-1182. 38.Mohammad, C.A., et al., Effect of Curcumin gel on inflammatory and anti-inflammatory biomarkers in experimental induced periodontitis in rats: a biochemical and immunological study. Front Microbiol, 2023. 14: p. 1274189. 39.Gorabi, A.M., et al., Effect of curcumin on proinflammatory cytokines: A meta-analysis of randomized controlled trials. Cytokine, 2021. 143: p. 155541. 40.Trigo-Gutierrez, J.K., et al., Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int J Mol Sci, 2021. 22(13). 41.Wang, Y., et al., Curcumin Attenuates Periodontal Injury via Inhibiting Ferroptosis of Ligature-Induced Periodontitis in Mice. Int J Mol Sci, 2023. 24(12). 42.Forouzanfar, F., et al., Curcumin for the Management of Periodontal Diseases: A Review. Curr Pharm Des, 2020. 26(34): p. 4277-4284. 43.Shamsnia, H.S., et al., Impact of curcumin on p38 MAPK: therapeutic implications. Inflammopharmacology, 2023. 31(5): p. 2201-2212. 44.Subhashini, et al., Intranasal curcumin ameliorates airway inflammation and obstruction by regulating MAPKinase activation (p38, Erk and JNK) and prostaglandin D2 release in murine model of asthma. Int Immunopharmacol, 2016. 31: p. 200-6. 45.Garcia-Martinez, O., et al., Repercussions of NSAIDS drugs on bone tissue: the osteoblast. Life Sci, 2015. 123: p. 72-7. 46.Chang, J.K., et al., Nonsteroidal anti-inflammatory drug effects on osteoblastic cell cycle, cytotoxicity, and cell death. Connect Tissue Res, 2005. 46(4-5): p. 200-10. 47.Tsai, J.C., et al., Anti-inflammatory effects of Scoparia dulcis L. and betulinic acid. Am J Chin Med, 2011. 39(5): p. 943-56. 48.Van Dyke, T.E., Pro-resolving mediators in the regulation of periodontal disease. Mol Aspects Med, 2017. 58: p. 21-36. 49.Panigrahy, D., et al., Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther, 2021. 227: p. 107879. 50.Serhan, C.N. and B.D. Levy, Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest, 2018. 128(7): p. 2657-2669. 51.Lo, Y.C., et al., Betulinic acid stimulates the differentiation and mineralization of osteoblastic MC3T3-E1 cells: involvement of BMP/Runx2 and beta-catenin signals. J Agric Food Chem, 2010. 58(11): p. 6643-9. 52.Yong Hee Kim, G.-S.K., and Jeong-Hwa Baek, Inhibitory action of bisphosphonates on bone resorption does not involve the regulation of RANKL and OPG expression. Experimental & Molecular Medicine, 2002. 34: p. 145–151. 53.Wu, Y.H., et al., Effects of theaflavins on tissue inflammation and bone resorption on experimental periodontitis in rats. J Periodontal Res, 2018. 53(6): p. 1009-1019.
|