|
[1] 歐新榮, 認識反應性化學品事故 勞工安全衛生簡訊, 77 (2006) 16-18. [2] K.Y.C. H.J. Liawa , H.Y. Chena , S.N. Liub, Effect of Heating Temperature on the Flash Point of Ionic Liquids, Procedia Engineering, 84 (2014) 293-296. [3] CCPS/AIChE, Guidelines for engineerign design for process safety, AIChE, New York, 1993. [4] F.P. Lees, Loss prevention in the process industries, Burerwroth-Heinemann, Oxford, 1996. [5] S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, N. Terada, Imidazolium-based room-temperature ionic liquid for lithium secondary batteries - Effects of lithium salt concentration, J. Electrochem. Soc., 154 (2007) A173-A177. [6] S. Keskin, D. Kayrak-Talay, U. Akman, O. Hortacsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluids, 43 (2007) 150-180. [7] R. Hagiwara, J.S. Lee, Ionic liquids for electrochemical devices, Electrochemistry, 75 (2007) 23-34. [8] D.M. Fox, W.H. Awad, J.W. Gilman, P.H. Maupin, H.C. De Long, P.C. Trulove, Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts, Green Chem., 5 (2003) 724-727. [9] D.M. Fox, J.W. Gilman, A.B. Morgan, J.R. Shields, P.H. Maupin, R.E. Lyon, H.C. De Long, P.C. Trulove, Flammability and thermal analysis characterization of imidazolium-based ionic liquids, Ind. Eng. Chem. Res., 47 (2008) 6327-6332. [10] M. Smiglak, W.M. Reichert, J.D. Holbrey, J.S. Wilkes, L.Y. Sun, J.S. Thrasher, K. Kirichenko, S. Singh, A.R. Katritzky, R.D. Rogers, Combustible ionic liquids by design: is laboratory safety another ionic liquid myth?, Chem. Commun., (2006) 2554-2556. [11] C.C. Chen, H.J. Liaw, Y.N. Chen, Flammability characteristics of ionic liquid 1-Decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, J. Loss Prev. Process Ind., 49 (2017) 620-629. [12] H.J. Liaw, C.C. Chen, Y.C. Chen, J.R. Chen, S.K. Huang, S.N. Liu, Relationship between flash point of ionic liquids and their thermal decomposition, Green Chem., 14 (2012) 2001-2008. [13] S.H. Liu, W.C. Lin, H. Xia, H.Y. Hou, C.M. Shu, Combustion of 1-butylimidazolium nitrate via DSC, TG, VSP2, FTIR, and GC/MS: An approach for thermal hazard, property and prediction assessment, Process Saf. Environ. Protect., 116 (2018) 603-614. [14] S. Mannan, Lees' Loss Prevention in the Process Industries, 3 ed., Butterworth-Heinemann, Oxford, UK, 2005. [15] H.J. Liaw, Lessons in process safety management learned from a pesticide plant explosion in Taiwan, Process Saf. Prog., 37 (2018) 104-109. [16] SDS of O,O-Dimethyl phosphoramidothioate, Safety Data Sheets, CAS 17321-47-0, in, 2022. [17] Y. Zhang, Y.H. Chung, S.H. Liu, C.M. Shu, J.C. Jiang, Analysis of thermal hazards of O,O-dimethylphosphoramidothioate by DSC, TG, VSP2, and GC/MS, Thermochim. Acta, 652 (2017) 69-76. [18] ASTM D93 Standard Test Methods for Flash-point by Pensky-martens Closed Cup Tester, in, American Society for Testing and Materials, West Conshohocken , PA, 2008. [19] J.F.L. Daniel A. Crowl Chemical Process Safety: Fundamentals with Applications, Pearson Education, Inc, Boston, 2011. [20] H.J. Liaw, Y.R. Liou, P.H. Liu, H.Y. Chen, C.M. Shu, Increased flammability hazard when ionic liquid C(6)mim Cl is exposed to high temperatures, J. Hazard. Mater., 367 (2019) 407-417. [21] H. Ohtani, S. Ishimura, M. Kumai, Thermal Decomposition Behaviors of Imidazolium-type Ionic Liquids Studied by Pyrolysis-Gas Chromatography, Anal. Sci., 24 (2008) 1335-1340. [22] A. Chowdhury, S.T. Thynell, Confined rapid thermolysis/FTIR/ToF studies of imidazolium-based ionic liquids, Thermochim. Acta, 443 (2006) 159-172. [23] M.C. Kroon, W. Buijs, C.J. Peters, G.J. Witkamp, Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids, Thermochim. Acta, 465 (2007) 40-47. [24] S.D. Chambreau, J.A. Boatz, G.L. Vaghjiani, C. Koh, O. Kostko, A. Golan, S.R. Leone, Thermal Decomposition Mechanism of 1-Ethyl-3-methylimidazolium Bromide Ionic Liquid, J. Phys. Chem. A, 116 (2012) 5867-5876. [25] Chloromethane, in, 3 November 2018. [26] H.J. Liaw, C.C. Yur, Y.F. Lin, A mathematical model for predicting thermal hazard data, J. Loss Prev. Process Ind., 13 (2000) 499-507. [27] H.J. Liaw, Y.R. Liou, Systematic thermal and flammability hazard analysis of a DMPAT explosion accident in Taiwan, Process Saf. Environ. Protect., 148 (2021) 20-33. [28] N.C. WebBook, Dimethyl sulfide, in, NIST Chemistry WebBook, 2020. [29] N.C. WebBook, Disulfide, dimethyl, in, NIST Chemistry WebBook, 2020.
|