|
[1] Sarac, U., &Baykul, M. C. (2013). Morphological and microstructural properties of two-phase Ni–Cu films electrodeposited at different electrolyte temperatures. Journal of Alloys and Compounds, 552, 195-201. [2] Bakhit, B., Akbari, A., Nasirpouri, F., & Hosseini, M. G. (2014). Corrosion resistance of Ni–Co alloy and Ni–Co/SiC nanocomposite coatings electrodeposited by sediment codeposition technique. Applied Surface Science, 307, 351-359. [3] Lu, T. W., Feng, C. S., Wang, Z., Liao, K. W., Liu, Z. Y., Xie, Y. Z., ... & Liao, W. B. (2019). Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Applied Surface Science, 494, 72-79. [4] Chuang, H. C., Jiang, G. W., & Sanchez, J. (2020). Study on the changes of ultrasonic parameters over supercritical Ni-Co electroplating process. Ultrasonics sonochemistry, 60, 104805. [5] Zhang, F., Yao, Z., Moliar, O., Zhang, Z., & Tao, X. (2020). Ultra-low-power preparation of multilayer nanocrystalline NiCo binary alloy coating by electrochemical additive manufacturing. Surface and Coatings Technology, 403, 126404. [6] Öztop, Ö., Ağaoğlu, G. H., & Orhan, G. (2019). Electrochemical Deposition and Characterization of Ni and NiCu Coatings for Hydrogen Evolution Reaction. Surface Engineering and Applied Electrochemistry, 55(4), 410-417. [7] Sidelev, D. V., Kashkarov, E. B., Syrtanov, M. S., & Krivobokov, V. P. (2019). Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings. Surface and Coatings Technology, 369, 69-78. [8] Tavoosi, M., & Barahimi, A. (2017). Corrosion behavior of amorphous–nanocrystalline Fe–Ni–Cr electrodeposited coatings. Surfaces and Interfaces, 8, 103-111. [9] Hu, M., Cao, Q., Wang, X., Zhang, D., & Jiang, J. Z. (2021). Tuning nanostructure and mechanical property of Fe-Co-Ni-Cr-Mn high entropy alloy thin films by substrate temperature. Materials Today Nano, 100130. [10] Mbugua, N. S., Kang, M., Zhang, Y., Ndiithi, N. J., V Bertrand, G., & Yao, L. (2020). Electrochemical deposition of Ni, NiCo alloy and NiCo–ceramic composite coatings—A critical review. Materials, 13(16), 3475. [11] Budi, S., Ayuningsih, A., Pratiwi, C., Paristiowati, M., Fadiran, R., & Sugihartono, I. (2020). Electropolymerization of Polyaniline Film as a Conductive Layer for the Electrodeposition of NiCo Alloy. In Journal of Physics: Conference Series (Vol. 1428, No. 1, p. 012017). IOP Publishing. [12] Yin, S., Li, W., Song, B., Yan, X., Kuang, M., Xu, Y., ... & Lupoi, R. (2019). Deposition of FeCoNiCrMn high entropy alloy (HEA) coating via cold spraying. Journal of Materials Science & Technology, 35(6), 1003-1007. [13] Cai, Z., Wang, Y., Cui, X., Jin, G., Li, Y., Liu, Z., & Dong, M. (2017). Design and microstructure characterization of FeCoNiAlCu high-entropy alloy coating by plasma cladding: In comparison with thermodynamic calculation. Surface and Coatings Technology, 330, 163-169. [14] Lu, J., Wang, B., Qiu, X., Peng, Z., & Ma, M. (2017). Microstructure evolution and properties of CrCuFexNiTi high-entropy alloy coating by plasma cladding on Q235. Surface and Coatings Technology, 328, 313-318. [15] Dada, M., Popoola, P., Mathe, N., Pityana, S., Adeosun, S., & Aramide, O. (2021). The comparative study of the microstructural and corrosion behaviour of laser-deposited high entropy alloys. Journal of Alloys and Compounds, 866, 158777. [16] Huang, L., Sun, Y., Amar, A., Wu, C., Liu, X., Le, G., ... & Li, J. (2021). Microstructure evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys by laser melting deposition. Vacuum, 183, 109875. [17] Chao, Q., Guo, T., Jarvis, T., Wu, X., Hodgson, P., & Fabijanic, D. (2017). Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel. Surface and Coatings Technology, 332, 440-451. [18] Wang, R., Zhang, K., Davies, C., & Wu, X. (2017). Evolution of microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy prepared by direct laser fabrication. Journal of Alloys and Compounds, 694, 971-981. [19] Cai, Z., Cui, X., Jin, G., Liu, Z., Li, Y., & Dong, M. (2017). TEM observation on phase separation and interfaces of laser surface alloyed high-entropy alloy coating. Micron, 103, 84-89. [20] Kim, Y. S., Park, H. J., Mun, S. C., Jumaev, E., Hong, S. H., Song, G., ... & Kim, K. B. (2019). Investigation of structure and mechanical properties of TiZrHfNiCuCo high entropy alloy thin films synthesized by magnetron sputtering. Journal of Alloys and Compounds, 797, 834-841. [21] Zhang, W., Tang, R., Yang, Z. B., Liu, C. H., Chang, H., Yang, J. J., ... & Liu, N. (2018). Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding. Surface and Coatings Technology, 347, 13-19. [22] Tunes, M. A., Vishnyakov, V. M., & Donnelly, S. E. (2018). Synthesis and characterisation of high-entropy alloy thin films as candidates for coating nuclear fuel cladding alloys. Thin Solid Films, 649, 115-120. [23] Xiao, L. L., Zheng, Z. Q., Guo, S. W., Huang, P., & Wang, F. (2020). Ultra-strong nanostructured CrMnFeCoNi high entropy alloys. Materials & Design, 194, 108895. [24] Shi, Y., Yang, B., Rack, P. D., Guo, S., Liaw, P. K., & Zhao, Y. (2020). High-throughput synthesis and corrosion behavior of sputter-deposited nanocrystalline Alx (CoCrFeNi) 100-x combinatorial high-entropy alloys. Materials & Design, 195, 109018. [25] Khan, N. A., Akhavan, B., Zheng, Z., Liu, H., Zhou, C., Zhou, H., ... & Liu, Z. (2021). Nanostructured AlCoCrCu0. 5FeNi high entropy oxide (HEO) thin films fabricated using reactive magnetron sputtering. Applied Surface Science, 553, 149491. [26] An, Z., Jia, H., Wu, Y., Rack, P. D., Patchen, A. D., Liu, Y., ... & Liaw, P. K. (2015). Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Materials Research Letters, 3(4), 203-209. [27] Wolf, W., Coury, F. G., Kaufman, M. J., Bolfarini, C., Kiminami, C. S., & Botta, W. J. (2018). The formation of quasicrystals in Al-Cu-Fe-(M= Cr, Ni) melt-spun ribbons. Journal of Alloys and Compounds, 731, 1288-1294. [28] Wolf, W., Bolfarini, C., Kiminami, C. S., & Botta, W. J. (2020). Designing new quasicrystalline compositions in Al-based alloys. Journal of Alloys and Compounds, 823, 153765. [29] Wolf, W., Kube, S. A., Sohn, S., Xie, Y., Cha, J. J., Scanley, B. E., ... & Schroers, J. (2019). Formation and stability of complex metallic phases including quasicrystals explored through combinatorial methods. Scientific Reports, 9(1), 1-11. [30] Wolf, W., Bolfarini, C., Kiminami, C. S., & Botta, W. J. (2019). Fabrication of Al-matrix composite reinforced with quasicrystals using conventional metallurgical fabrication methods. Scripta Materialia, 173, 21-25. [31] Daniels, M. J., King, D., Fehrenbacher, L., Zabinski, J. S., & Bilello, J. C. (2005). Physical vapor deposition route for production of Al–Cu–Fe–Cr and Al–Cu–Fe quasicrystalline and approximant coatings. Surface and Coatings Technology, 191(1), 96-101. [32] Srivastava, M., Selvi, V. E., Grips, V. W., & Rajam, K. S. (2006). Corrosion resistance and microstructure of electrodeposited nickel–cobalt alloy coatings. Surface and Coatings Technology, 201(6), 3051-3060. [33] Yang, X., Li, Q., Zhang, S., Gao, H., Luo, F., & Dai, Y. (2010). Electrochemical corrosion behaviors and corrosion protection properties of Ni–Co alloy coating prepared on sintered NdFeB permanent magnet. Journal of Solid State Electrochemistry, 14(9), 1601-1608. [34] Wang, L., Gao, Y., Xue, Q., Liu, H., & Xu, T. (2005). Microstructure and tribological properties of electrodeposited Ni–Co alloy deposits. Applied Surface Science, 242(3-4), 326-332. [35] Pereira, R. F. D. C., Oliveira, E. S. D. D., Vieira, M. R. S., Lima, M. A. G. D. A., & Urtiga, S. L. (2017). Evaluation of Co-Ni/SiC nanocomposite coating obtained by electrodeposition on the corrosion resistance of API 5L X80 steel. Materials Research, 20, 221-230. [36] Menazea, A. A., Mostafa, A. M., & Al-Ashkar, E. A. (2020). Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Optical Materials, 100, 109663. [37] Das, S., Guha, S., Das, P. P., & Ghadai, R. K. (2020). Analysis of morphological, microstructural, electrochemical and nano mechanical characteristics of TiCN coatings prepared under N2 gas flow rate by chemical vapour deposition (CVD) process at higher temperature. Ceramics International, 46(8), 10292-10298. [38] Hussein, M. A., Adesina, A. Y., Kumar, A. M., Sorour, A. A., Ankah, N., & Al-Aqeeli, N. (2020). Mechanical, in-vitro corrosion, and tribological characteristics of TiN coating produced by cathodic arc physical vapor deposition on Ti20Nb13Zr alloy for biomedical applications. Thin Solid Films, 709, 138183. [39] Mukhtar, A., Khan, B. S., & Mehmood, T. (2016). Appropriate deposition parameters for formation of fcc Co–Ni alloy nanowires during electrochemical deposition process. Applied Physics A, 122(12), 1-9. [40] Sun, T., Cao, J., Dong, J., Du, H., Zhang, H., Chen, J., & Xu, L. (2017). Ordered mesoporous NiCo alloys for highly efficient electrocatalytic hydrogen evolution reaction. International Journal of Hydrogen Energy, 42(10), 6637-6645. [41] Feng, X. B., Fu, W., Zhang, J. Y., Zhao, J. T., Li, J., Wu, K., ... & Sun, J. (2017). Effects of nanotwins on the mechanical properties of AlxCoCrFeNi high entropy alloy thin films. Scripta Materialia, 139, 71-76. [42] Rauf, A., Guo, C. Y., Fang, Y. N., Yu, Z., Sun, B. A., & Feng, T. (2018). Binary Cu-Zr thin film metallic glasses with tunable nanoscale structures and properties. Journal of Non-Crystalline Solids, 498, 95-102. [43] Jin, K., Lu, C., Wang, L. M., Qu, J., Weber, W. J., Zhang, Y., & Bei, H. (2016). Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys. Scripta Materialia, 119, 65-70. [44] Zhang, Y., Kang, M., Nyambura, S. M., Yao, L., Jin, M., & Zhu, J. (2020). Fabrication of Ni–Co–P Alloy coatings using jet electrodeposition with varying reciprocating sweep speeds and jet gaps to improve wear and seawater corrosion resistance. Coatings, 10(10), 924. [45] Rao, S., Zou, X., Wang, S., Lu, Y., Shi, T., Hsu, H. Y., ... & Lu, X. (2019). Electrodeposition of Ni-Cu alloy films from nickel matte in deep eutectic solvent. Materials Chemistry and Physics, 232, 6-15. [46] Baskaran, I., Narayanan, T. S., & Stephen, A. (2006). Pulsed electrodeposition of nanocrystalline Cu–Ni alloy films and evaluation of their characteristic properties. Materials Letters, 60(16), 1990-1995. [47] Sarac, U., & Baykul, M. C. (2013). Morphological and microstructural properties of two-phase Ni–Cu films electrodeposited at different electrolyte temperatures. Journal of Alloys and Compounds, 552, 195-201. [48] Zhou, Y., Jing, T., Hao, Q., Zhou, Y., & Mei, S. (2012). A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode. Electrochimica Acta, 74, 165-170. [49] Kuru, H., Kockar, H., & Alper, M. (2013).Characterizations of NiCu/Cu multilayers: dependence of nonmagnetic layer thickness. Journal of Superconductivity and Novel Magnetism, 26(4), 779-784. [50] Zhou, X. W., & Wadley, H. N. G. (1998). Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers: The effects of adatom incident energy. Journal of Applied Physics, 84(4), 2301-2315. [51] Celik, F. A. (2013). Cooling rate dependence of the icosahedral order of amorphous CuNi alloy: A molecular dynamics simulation. Vacuum, 97, 30-35. [52] Pham, A. V., Fang, T. H., Tran, A. S., & Chen, T. H. (2020). Effect of annealing and deposition of Cu atoms on Ni trench to interface formation and growth mechanisms of Cu coating. Superlattices and Microstructures, 139, 106402. [53] Hassani, A., Makan, A., Sbiaai, K., Tabyaoui, A., & Hasnaoui, A. (2015). Molecular dynamics study of growth and interface structure during aluminum deposition on Ni (1 0 0) substrate. Applied Surface Science, 349, 785-791. [54] Hassani, A., El Azrak, H., Eddiai, F., Dardouri, M., Arbaoui, A., Monkade, M., ... & Hasnaoui, A. (2019). Statistical investigations of the film-substrate interface during aluminum deposition on Ni (111) by molecular dynamics simulation. Superlattices and Microstructures, 127, 80-85. [55] Wu, B., Zhou, J., Xue, C., & Liu, H. (2015). Molecular dynamics simulation of the deposition and annealing of NiAl film on Ni substrate. Applied Surface Science, 355, 1145-1152. [56] Xie, L., Brault, P., Thomann, A. L., Yang, X., Zhang, Y., & Shang, G. (2016). Molecular dynamics simulation of Al–Co–Cr–Cu–Fe–Ni high entropy alloy thin film growth. Intermetallics, 68, 78-86. [57] El Azrak, H., Hassani, A., Sbiaai, K., & Hasnaoui, A. (2020). Investigating the potentialities of Ni3Al alloy formation on Ni substrates: Molecular dynamics simulation. Journal of Crystal Growth, 537, 125607. [58] Li, J., Fang, Q., Liu, B., Liu, Y., & Liu, Y. (2016). Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC advances, 6(80), 76409-76419. [59] Zeng, Z., Zhao, J., Zhou, X., Li, J., & Liang, B. (2019). Thermal stability of Al-Cu-Fe-Cr-Ni high entropy alloy bulk and nanoparticle structure: A molecular dynamics perspective. Chemical Physics, 517, 126-130. [60] Mishra, D. K., Meraj, M., BadJena, S. K., & Pal, S. (2019). Structural evolution and dislocation behaviour study during nanoindentation of Mo20W20Co20Ta20Zr20 high entropy alloy coated Ni single crystal using molecular dynamic simulation. Molecular Simulation, 45(7), 572-584. [61] Chocyk, D., & Zientarski, T. (2018). Molecular dynamics simulation of Ni thin films on Cu and Au under nanoindentation. Vacuum, 147, 24-30. [62] Reddy, K. V., & Pal, S. (2018). Analysis of deformation behaviour of Al–Ni–Co thin film coated aluminium during nano-indentation: a molecular dynamics study. Molecular Simulation, 44(17), 1393-1401. [63] Mishra, D. K., Meraj, M., BadJena, S. K., & Pal, S. (2019). Dislocation interaction and V-shaped growth of the distorted structure during nanoindentation of Cu20Ni20Al20Co20Fe20 (high-entropy alloy)-coated copper: a molecular dynamics simulation-based study. Transactions of the Indian Institute of Metals, 72(1), 167-180. [64] Mes-adi, H., Lachtioui, Y., Saadouni, K., & Mazroui, M. (2020). Morphology and surface properties of Cu thin film on Si (001). Thin Solid Films, 698, 137853. [65] Liang, K., Sun, X., Wu, G., Zhang, L., Liu, S., & Gan, Z. (2020). The investigation of molecular beam epitaxy growth of GaN by molecular dynamics simulation. Computational Materials Science, 173, 109426. [66] Hwang, S. F., Li, Y. H., & Hong, Z. H. (2012). Molecular dynamic simulation for Cu cluster deposition on Si substrate. Computational Materials Science, 56, 85-94. [67] Daw, M. S., & Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29(12), 6443. [68] Winey, J. M., Kubota, A., & Gupta, Y. M. (2009). A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum. Modelling and Simulation in Materials Science and Engineering, 17(5), 055004. [69] Mishin, Y., Mehl, M. J., Papaconstantopoulos, D. A., Voter, A. F., & Kress, J. D. (2001). Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Physical Review B, 63(22), 224106. [70] Bonny, G., Castin, N., & Terentyev, D. (2013). Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy. Modelling and Simulation in Materials Science and Engineering, 21(8), 085004. [71] Tang, C., Ren, P., & Chen, X. (2019). Cooling of Al-Cu-Fe-Cr-Ni high entropy alloy with different size. Physics Letters A, 383(19), 2290-2295. [72] Hong, Z. H., Lin, S. J., Fang, T. H., & Hwang, S. F. (2011). Effect of thermal annealing on the stress and morphology of deposited nanofilms analyzed using molecular dynamics. Surface and Coatings Technology, 205(13-14), 3865-3871. [73] Cao, Y., Zhang, J., Sun, T., Yan, Y., & Yu, F. (2010). Atomistic study of deposition process of Al thin film on Cu substrate. Applied Surface Science, 256(20), 5993-5997. [74] Qiu, C., Zhu, P., Fang, F., Yuan, D., & Shen, X. (2014). Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Applied Surface Science, 305, 101-110. [75] Abdeslam, S. (2019). Influence of silver inclusions on the mechanical behavior of Cu-Ag nanocomposite during nanoindentation: Molecular dynamics study. Results in Physics, 15, 102672. [76] Mojumder, S., Mahboob, M., & Motalab, M. (2020). Atomistic and finite element study of nanoindentation in pure aluminum. Materials Today Communications, 23, 100798. [77] Chavoshi, S. Z., & Xu, S. (2018). Twinning effects in the single/nanocrystalline cubic silicon carbide subjected to nanoindentation loading. Materialia, 3, 304-325. [78] Pun, G. P., Yamakov, V., & Mishin, Y. (2015). Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Modelling and Simulation in Materials Science and Engineering, 23(6), 065006. [79] Mishin, Y., Farkas, D., Mehl, M. J., & Papaconstantopoulos, D. A. (1999). Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Physical Review B, 59(5), 3393. [80] Tang, Y., & Li, D. Y. (2020). Nano-tribological behavior of high-entropy alloys CrMnFeCoNi and CrFeCoNi under different conditions: A molecular dynamics study. Wear, 203583. [81] Huang, C., Peng, X., Yang, B., Xiang, H., Sun, S., Chen, X., ... & Fu, T. (2018). Anisotropy effects in diamond under nanoindentation. Carbon, 132, 606-615. [82] Huang, C., Peng, X., Fu, T., Chen, X., Xiang, H., Li, Q., & Hu, N. (2017). Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation. Materials Science and Engineering: A, 700, 609-616. [83] Li, J., Guo, J., Luo, H., Fang, Q., Wu, H., Zhang, L., & Liu, Y. (2016). Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Applied Surface Science, 364, 190-200. [84] Imran, M., Hussain, F., Rashid, M., & Ahmad, S. A. (2012). Dynamic characteristics of nanoindentation in Ni: A molecular dynamics simulation study. Chinese Physics B, 21(11), 116201. [85] Kazanc, S. (2007). Molecular dynamics study of pressure effect on crystallization behaviour of amorphous CuNi alloy during isothermal annealing. Physics Letters A, 365(5-6), 473-477. [86] Xie, L., Brault, P., Thomann, A. L., & Bauchire, J. M. (2013). AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Applied Surface Science, 285, 810-816. [87] Hong, Z. H., Hwang, S. F., & Fang, T. H. (2011). The deposition of Fe or Co clusters on Cu substrate by molecular dynamic simulation. Surface Science, 605(1-2), 46-53. [88] Hong, Z. H., Hwang, S. F., & Fang, T. H. (2010). Atomic-level stress calculation and surface roughness of film deposition process using molecular dynamics simulation. Computational Materials Science, 48(3), 520-528. [89] Zhang, J., Liu, C., Shu, Y., & Fan, J. (2012). Growth and properties of Cu thin film deposited on Si (0 0 1) substrate: a molecular dynamics simulation study. Applied Surface Science, 261, 690-696. [90] Yang, Y. G., Johnson, R. A., & Wadley, H. N. G. (1997). A Monte Carlo simulation of the physical vapor deposition of nickel. Acta Materialia, 45(4), 1455-1468. [91] Zhou, X. W., Johnson, R. A., & Wadley, H. N. G. (1997). A molecular dynamics study of nickel vapor deposition: temperature, incident angle, and adatom energy effects. Acta Materialia, 45(4), 1513-1524. [92] Yang, Y. G., Zhou, X. W., Johnson, R. A., & Wadley, H. N. G. (2001). Monte Carlo simulation of hyperthermal physical vapor deposition. Acta Materialia, 49(16), 3321-3332. [93] Jing, X. B., Liu, Z. L., & Yao, K. L. (2012). Molecular dynamics investigation of deposition and annealing behaviors of Cu atoms onto Cu (0 0 1) substrate. Applied Surface Science, 258(7), 2771-2777. [94] Villain, J. (1991). Continuum models of crystal growth from atomic beams with and without desorption. Journal de Physique I, 1(1), 19-42. [95] Wu, H., Wang, Y., Zhong, Q., Sheng, M., Du, H., & Li, Z. (2011). The semi-conductor property and corrosion resistance of passive film on electroplated Ni and Cu–Ni alloys. Journal of Electroanalytical Chemistry, 663(2), 59-66. [96] Fu, T., Peng, X., Zhao, Y., Feng, C., Huang, C., Li, Q., & Wang, Z. (2016). MD simulation of effect of crystal orientations and substrate temperature on growth of Cu/Ni bilayer films. Applied Physics A, 122(2), 67. [97] Müller, C. M., Parviainen, S., Djurabekova, F., Nordlund, K., & Spolenak, R. (2015). The as-deposited structure of co-sputtered Cu–Ta alloys, studied by X-ray diffraction and molecular dynamics simulations. Acta Materialia, 82, 51-63. [98] Qi, Y., Xu, H., He, T., & Feng, M. (2021). Effect of crystallographic orientation on mechanical properties of single-crystal CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A, 814, 141196. [99] Fu, T., Peng, X., Chen, X., Weng, S., Hu, N., Li, Q., & Wang, Z. (2016). Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Scientific Reports, 6(1), 1-10. [100] Cao, Y., Zhang, J., Liang, Y., Yu, F., & Sun, T. (2010). Mechanical and tribological properties of Ni/Al multilayers—A molecular dynamics study. Applied Surface Science, 257(3), 847-851. [101] Fang, T. H., Weng, C. I., & Chang, J. G. (2003). Molecular dynamics analysis of temperature effects on nanoindentation measurement. Materials Science and Engineering: A, 357(1-2), 7-12. [102] Hua, D., Xia, Q., Wang, W., Zhou, Q., Li, S., Qian, D., ... & Wang, H. (2021). Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation. International Journal of Plasticity, 142, 102997. [103] Zhang, Z., Fu, Q., Wang, J., Xiao, P., Ke, F., & Lu, C. (2021). Hardening Ni3Al via complex stacking faults and twinning boundary. Computational Materials Science, 188, 110201. [104] Pham, A. V., Fang, T. H., Tran, A. S., & Chen, T. H. (2020). Structural and mechanical characterization of sputtered CuxNi100-x thin film using molecular dynamics. Journal of Physics and Chemistry of Solids, 147, 109663. [105] Gao, Y., Ruestes, C. J., Tramontina, D. R., & Urbassek, H. M. (2015). Comparative simulation study of the structure of the plastic zone produced by nanoindentation. Journal of the Mechanics and Physics of Solids, 75, 58-75. [106] Mojumder, S., Mahboob, M., & Motalab, M. (2020). Atomistic and finite element study of nanoindentation in pure aluminum. Materials Today Communications, 23, 100798. [107] Hull, D., Bacon, D. J., & Hull, D. (2011). Chapter 5—Dislocations in face-centered cubic metals. Introduction to Dislocations, 5th ed.; Butterworth-Heinemann: Oxford, UK, 85-107. [108] Luu, H. T., Dang, S. L., Hoang, T. V., & Gunkelmann, N. (2021). Molecular dynamics simulation of nanoindentation in Al and Fe: On the influence of system characteristics. Applied Surface Science, 551, 149221. [109] Abdeslam, S. (2019). Influence of silver inclusions on the mechanical behavior of Cu-Ag nanocomposite during nanoindentation: Molecular dynamics study. Results in Physics, 15, 102672. [110] Doan, D. Q., Fang, T. H., & Chen, T. H. (2020). Nanotribological characteristics and strain hardening of amorphous Cu64Zr36/crystalline Cu nanolaminates. Tribology International, 147, 106275 [111] Yang, X., Zhang, J., Sagar, S., Dube, T., Kim, B. G., Jung, Y. G., ... & Zhang, J. (2021). Molecular dynamics modeling of mechanical and tribological properties of additively manufactured AlCoCrFe high entropy alloy coating on aluminum substrate. Materials Chemistry and Physics, 263, 124341. [112] Chavoshi, S. Z., & Xu, S. (2018). Twinning effects in the single/nanocrystalline cubic silicon carbide subjected to nanoindentation loading. Materialia, 3, 304-325. [113] Liang, S. W., Qiu, R. Z., & Fang, T. H. (2017). Molecular dynamics simulations of nanoindentation and scratch in Cu grain boundaries. Beilstein Journal of Nanotechnology, 8(1), 2283-2295. [114] Imran, M., Hussain, F., Rashid, M., Cai, Y., & Ahmad, S. A. (2013). Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs): A molecular dynamics approach. Chinese Physics B, 22(9), 096101. [115] Fan, Y. C., Fang, T. H., Lin, K. M., & Qiu, R. Z. (2017). Nanoindentation and Deformation of Multilayered Au/Cu Films. Smart Science, 5(1), 1-13. [116] Pham, V. T., & Fang, T. H. (2020). Pile-up and heat effect on the mechanical response of SiGe on Si (0 0 1) substrate during nanoscratching and nanoindentation using molecular dynamics. Computational Materials Science, 174, 109465. [117] Liu, C. L., Fang, T. H., & Lin, J. F. (2007). Atomistic simulations of hard and soft films under nanoindentation. Materials Science and Engineering: A, 452, 135-141.
|