|
1.Alrashydah E.I., Abo-Qudais S.A. (2018). Modeling of creep compliance behavior in asphalt mixes using multiple regression and artificial neural networks, Construction and Building Materials, 159, pp. 635-641. 2.Amalu, E.H., Ekere, N.N., Mallik, S. (2011). Evaluation of rheological properties of lead-free solder pastes and their relationship with transfer efficiency during stencil printing process, Materials and Design, 32, pp. 3189-3197. 3.Amir, D., (1994), Expert system for SMT assembly, Proceedings of the Surface Mount International Conference and Exposition – Technical Program, San Jose, CA, pp. 691-699. 4.Amiri, S.S., Mottahedi, M., Asadi, S. (2015). Using multiple regression analysis to develop energy consumption indicators for commercial buildings in the U.S., Energy and Buildings, 109, pp. 209-216. 5.Bao, X., Lee, N. -C, Raj, R.B., Rangan, K. P., and Maria, A. (1997). Engineering solder paste performance through controlled stress rheology analysis, Soldering and Surface Mount Technology, 10, pp. 26-35. 6.Breiman, L., Friedman, J., Olshen, R.and Stone, C. (1984). Classification and regression trees. Wadsworth Books. 7.Bihu S., Balaji R., JoAnn S. (2017). Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model, Science of the Total Environment, 598, pp. 249-257. 8.Celik, N., Turgut, E., Wang, L. -B. (2012). Design analysis of an experimental jet impingement study by using Taguchi method, Heat Mass Transfer, 48, pp. 1408-1413. 9.Chellvarajoo, S., Abdullah, M.Z. (2016). Microstructure and mechanical properties of Pb-free Sn–3.0Ag–0.5Cu solder pastes added with NiO nanoparticles after reflow soldering process, Materials and Design, 90, pp. 499-507. 10.Ciurana J., Quintana G., Garcia-Romeu M.L. (2008). Estimating the cost of vertical high-speed machining centres, a comparison between multiple regression analysis and the neural networks approach, International Journal of Production Economics, 115, pp. 171-178. 11.Constantin, S., Stephan, D. E., Birger, K., Bernd, T. M. (2018). Predicting speech intelligibility with deep neural networks, Computer Speech and Language, 48, pp. 51-66. 12.Duan, J. (2019). Financial system modeling using deep neural networks (DNNs) for Effective Risk Assessment and Prediction, Journal of the Franklin Institute, DOI: https://doi.org/10.1016/j.jfranklin.2019.01.046. 13.Ekere, N.N., He, D., and Cai, L., (2001), The influence of wall slip in the measurement of solder paste viscosity, IEEE Transactions on Components and Packaging Technologies, 24, pp. 468-473. 14.Elżbieta, G. H., Maciej, H., Dominika, G., Iwona, W. K., Agnieszka, W. (2017). Chromatographic fingerprints supported by artificial neural network for differentiation of fresh and frozen pork, Food Control, 73, pp. 237-244. 15.Eslamian, S.A., Li, S.S., Haghighat, F. (2016). A new multiple regression model for predictions of urban water use, Sustainable Cities and Society, 27, pp. 419-429. 16.Fledmann, K. and Sturm, J. (1994). Closed loop quality control in printed circuit assembly, IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part A, 17, 270-276. 17.Gil, M.J., Erdakov, I.N., Bustillo A., Pimenov D.Y. (2019). A Regression-Tree Multilayer-Perceptron Hybrid Strategy for the Prediction of Ore Crushing-Plate Lifetimes, Journal of Advanced Research, DOI: https://doi.org/10.1016/j.jare.2019.03.008. 18.Gülden K.U., Güler N. (2013). A Study on Multiple Linear Regression Analysis, Procedia - Social and Behavioral Sciences, 106, 234-240. 19.Hirman, M., Steiner, F. (2017). Optimization of solder paste quantity considering the properties of solder joints, Soldering Surface Mount Technology, 29, pp. 15-22. 20.Huang, H.-C., Lin, Y.-C, Hung, M.-H, Tu, C.-C, and Cheng, F.-T, (2015), Development of cloud-based automatic virtual metrology system for semiconductor industry, Robotics and Computer-Integrated Manufacturing, 34, pp. 30-43. 21.Hwang, J.S. (1996). Modern solder technology for competitive electronics manufacturing, McGraw-Hill, Inc., New York. 22.IPC-7095C. (2010). Design and Assembly Process Implementation for BGAs, The Institute for Interconnecting and Packaging Electronic Circuits, Northbrook, Illinois. 23.IPC-7525L. (2010). Stencil Design Guidelines, The Institute for Interconnecting and Packaging Electronic Circuits, Northbrook, Illinois. 24.Irani, O.D., Golzarian, M.R., Aghkhani, M.H., Sadrnia, H., Irani, M.D. (2016). Development of multiple regression model to estimate the apple’s bruise depth using thermal maps, Postharvest Biology and Technology, 116, pp. 75-79. 25.Itoh, M., (2010), General information on solder paste, Technical Report, KOKI Company Limited, Japan, Tokyo. 26.Jörg, D., Ulrich, F., Christian, P. (2017). Predicting recessions with boosted regression trees, International Journal of Forecasting, 33, pp. 745-759. 27.Khader, N., Yoon, S. W. (2018). Online control of stencil printing parameters using reinforcement learning approach, Procedia Manufacturing, 17, pp. 94-101. 28.Lathrop, R.R. (1997). Solder paste print qualification using laser triangulation, IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part C, 20, 174-182. 29.Lewis, C.D. (1982). Industrial and business forecasting methods. London: Butterworths. 30.Liu, H., Xu, J., Wu, Y., Guo, Q., Ibragimov, B., Xing, L. (2017). Learning deconvolutional deep neural network for high resolution medical image reconstruction, Information Sciences, 468, pp. 142-154. 31.Lofti, A., Howarth, M. (1998). Industrial application of fuzzy systems: adaptive fuzzy control of solder paste stencil printing, Information Sciences, 107, pp. 273-285. 32.Mohamad, H.H., Ibrahim, A.H., Massoud, H.H. (2013). Assessment of the expected construction company’s net profit using neural network and multiple regression models, Ain Shams Engineering Journal, 4, pp. 375-385. 33.Naik, A.B., Reddy, A.C. (2018). Optimization of tensile strength in TIG welding using the Taguchi method and analysis of variance (ANOVA), Thermal Science and Engineering Progress, 8, pp. 327-339. 34.Nguty, T. A., and Ekere, N. N. (2001). The rheological properties of solder and solar pastes and the effect on stencil printing. Rheologica Acta, 39, pp. 607–612. 35.Owczarek, J. A. and Howland, F. L. (1990). “A study of the off-contact screen printing process-Part I: Model of the printing process and some results derived from experiment”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 13(2), pp. 358-367. 36.Pan, J. Tonkay, G.L., Storer, R.H., Sallade, R.M.& Leandri, D.J. (2004). “Critical variables of solder paste stencil printing for Micro-BGA and fine-pitch QFP”. IEEE Transactions on Electronics Packaging and Manufacturing, 27,125-132. 37.Phadke M.S. (1989). Quality Engineering Using Robust Design, AT&T Bell Labs. 38.Poon, G.K. & Williams, D.J. (1999). Characterization of a solder paste printing process and its optimization, Soldering & Surface Mount Technology, 11, 23-26. 39.Ross P.J. (1996), Taguchi Techniques for Quality Engineering, McGraw-Hill, NY. 40.Seo, Y., Shin, K. S. (2017). Hierarchical convolutional neural networks for fashion image classification, Expert Systems With Applications, 116, pp. 328-339. 41.Smith, I. (2014). Advances in fine-pitch printing process technology, Circuits Assembly, pp. 30-36. 42.Son, M.J., Kim, M., Lee, T.M., Kim, J., Lee, H.J., Kim, I. (2018). Mechanical and electrical properties of reverse-offset printed Sn-Ag-Cu solder bumps, Journal of Materials Processing Tech, 259, pp. 126-133. 43.Su, C.-T., Hsu, C.-C., Yang, T., Hsu, H.-P. (2017). Optimization of Solder Volume in Printed Circuit Board Assembly Through an Operating Window Experiment—A Case Study, The Society for Experimental Mechanics, DOI: 10.1007/s40799-017-0168-3. 44.Tieng, H. -C., Tsai, T., Chen, C., Yang, H., Huang, J. and Cheng, F. -T. (2018). "Automatic Virtual Metrology and Deformation Fusion Scheme for Engine-Case Manufacturing,", IEEE Robotics and Automation Letters, 3(2), pp. 934-941. 45.TQFP introduction, (2019). TopLine Corporation, GA, USA. 46.Tsai, T.N. (2008). Modeling and optimization of stencil printing operations: a comparison study, Computers & Industrial Engineering, 54(3), 374-389. 47.Tsai, T.N. (2011). Improving the fine-pitch stencil printing capability using the Taguchi method and Taguchi fuzzy-based model. Robotics and Computer-Integrated Manufacturing, 27(4), 808-817. 48.Tsai, T.-N., Liukkonen, M. (2016). Robust parameter design for the micro-BGA stencil printing process using a fuzzy logic-based Taguchi method, Applied Soft Computing, 48, pp. 124-136. 49.Whalley, D.C. (2004). A simplified reflow soldering process model, Journal of Materials Processing Technology, 150, pp. 134-144. 50.Whitmore, M.; Mackay, C., Hobby, A. (1997). Plastic stencils for bottom-side chip attach, Electronic Packaging & Production, 37(13), 68-72.
|