|
[1]C. Battaglia, A. Cuevas, and S. D. Wolf, “High-Efficiency Crystalline Silicon Solar Cells: Status and Perspectives,” Energy Environ. Sci., vol. 9, p. 1552, 2016. [2]A. M. Elseman, S. Sajid, A. E. Shalan, S. A. Mohamed, and M. M. Rashad, “Recent Progress Concerning Inorganic Hole Transport Layers for Efficient Perovskite Solar Cells,” Appl. Phys. A, vol. 125, p. 476, 2019. [3]H. Worch, “High Temperature Corrosion,” Appl. Phys. A, vol. 24, p. 378, 1989. [4]P. Kofstad, “Defects and Transport Properties of Metal Oxides,” Oxid. Met., vol. 44, p. 3, 1995. [5]A. Atkinson and R. I. Taylor, “The Diffusion of 63Ni Along Grain Boundaries in Nickel Oxide,” Philos. Mag. A, vol. 43, p. 979, 1981. [6]L. Alibabaei, H. Luo, R. L. House, P. G. Hoertz, R. Lopez, and T. J. Meyer, “Applications of Metal Oxide Materials in Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: Let the Molecules do the Work,” J. Mater. Chem. A, vol. 1, p. 4133, 2013. [7]Y. Wang, R. Wenisch, R. Schlatmann, and I. Lauermann, “Inorganic Materials as Hole Selective Contacts and Intermediate Tunnel Junction Layer for Monolithic Perovskite-CIGSe Tandem Solar Cells,” Adv. Energy Mater, vol. 8, p. 1801692, 2018. [8]X. Yin, Y. Guo, H. Xie, W. Que, and L. B. Kong, “Nickel Oxide as Efficient Hole Transport Materials for Perovskite Solar Cells,” Sol. RRL vol. 3, p. 1900001, 2019. [9]J. M. Caruge, J. E. Halpert, V. Bulovic, and M. G. Bawendi, “NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices,” Nano Lett., vol. 6, p. 2991, 2006. [10]B. Parida, S. Yoon, J. Ryu, S. Hayase, S. M. Jeong, and D. W. Kang, “Boosting the Conversion Efficiency Over 20 % in MAPbI3 Perovskite Planar Solar Cells by Employing a Solution-Processed Aluminum-Doped Nickel Oxide Hole Collector,” ACS Appl. Mater. Interfaces, vol. 20, p. 22958, 2020. [11]M. T. Greiner, M. G. Helander, Z. B. Wang, W. M. Tang, and Z. H. Lu, “Effects of Processing Conditions on the Work Function and Energy-Level Alignment of NiO Thin Films,” J. Phys. Chem. C, vol. 114, p. 19777, 2010. [12]B. Wang, J. Nisar, and R. Ahuja, “Molecular Simulation for Gas Adsorption at NiO (100) Surface,” ACS Appl. Mater. Interfaces, vol. 4, p. 5691, 2012. [13]S. Liu, R. Liu, Y. Chen, S. Ho, J. H. Kim, and F. So, “Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light-Emitting Diodes,” Chem. Mater., vol. 26, p. 4528, 2014. [14]S. Liu, S. Ho, Y. Chen, and F. So, “Passivation of Metal Oxide Surfaces for High-Performance Organic and Hybrid Optoelectronic Devices,” Chem. Mater., vol. 27, p. 2532, 2015. [15]W. Yu, L. Shen, S. Ruan, F. Meng, J. Wang, E. Zhang, and W. Chen, “Performance Improvement of Inverted Polymer Solar Cells Thermally Evaporating Nickel Oxide as an Anode Buffer Layer,” Sol. Energy Mater. Sol. Cells, vol. 98, p. 212, 2012. [16]Y. Zhang, L. Zhao, H. Jia, and P. Li, “Study of the Electroluminescence Performance of NiO-Based Quantum Dot Light-Emitting Diodes: The Effect of Annealing Atmosphere,” Appl. Surf. Sci., vol. 526, p. 146732, 2020. [17]M. L. Grilli, F. Menchini, T. Dikonimos, P. Nunziante, L. Pilloni, M. Yilmaz, A. Piegari, and A. Mittiga, “Effect of Growth Parameters on the Properties of RF-Sputtered Highly Conductive and Transparent P-Type NiO Films,” Semicond. Sci. Technol., vol. 31, p. 055016, 2016. [18]S. Y. Park, H. R. Kim, Y. J. Kang, D. H. Kim, and J. W. Kang, “Organic Solar Cells Employing Magnetron Sputtered P-Type Nickel Oxide Thin Film as the Anode Buffer Layer,” Sol. Energy Mater. Sol. Cells, vol. 94, p. 2332, 2010. [19]X. Wan, Y. Jiang, Z. Qiu, H. Zhang, X. Zhu, I. Sikandar, X. Liu, X. Chen, and B. Cao, “Zinc as a New Dopant for NiOx Based Planar Perovskite Solar Cells with Stable Efficiency Near 20 %,” ACS Appl. Energy Mater., vol. 8, p. 3947, 2018. [20]F. S. Hashim, and N. A. Sami, “Effect of Zn Doping on Structural and Some Optical Studies of Nano NiO Films Prepared by Sol–Gel Technique,” J. Astrophys. Astron., vol. 53, p. 31, 2015. [21]J. H. Lee, Y. W. Noh, I. S. Jin, and J. W. Jung, “Efficient Planar Heterojunction Perovskite Solar Cells Employing a Solution-Processed Zn-Doped NiOx Hole Transport Layer,” Electrochim. Acta, vol. 284, p. 253, 2018. [22]S. Nandy, U. N. Maiti, C. K. Ghosh, and K. K. Chattopadhyay, “Enhanced P-Type Conductivity and Band Gap Narrowing in Heavily Al Doped NiO Thin Films Deposited by RF Magnetron Sputtering,” Electrochim. Acta, vol. 21, p. 115804, 2009. [23]F. H. Hsu, N. F. Wang, Y. Z. Tsai, C. Y. Wu, Y. S. Cheng, M. H. Chien, and M. P. Houng, “Enhanced Carrier Collection in P-Ni1-xO:Li/N-Si Heterojunction Solar Cells Using LiF/Al Electrodes,” Thin Solid Films, vol. 573, p. 159, 2014. [24]J. Y. Zhang, W. W. Li, R. L. Z. Hoye, J. L. M. Driscoll, M. Budde, O. Bierwagen, L. Wang, Y. Du, M. J. Wahila, L. F. J. Piper, T. L. Lee, H. J. Edwards, V. R. Dhanakg, and K. H. L. Zhang, “Electronic and Transport Properties of Li-Doped NiO Epitaxial Thin Films,” J. Mater. Chem. C, vol. 6, p. 2275, 2018. [25]X. Yang, J. Guo, Y. Zhang, W. Liu, and Y. Sun, “Hole-Selective NiO:Cu Contact for NiO/Si Heterojunction Solar Cells,” J. Alloys Compd., vol. 747, p. 563, 2018. [26]W. Chen, Y. Wu, J. Fan, A. B. Djurisic, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, and Z. B. He, “Understanding the Doping Effect on NiO: Toward High‐Performance Inverted Perovskite Solar Cells,” Adv. Energy Mater., vol. 8, p. 1703519, 2018. [27]X. Yang, W. Liu, G. Pan, and Y. Sun, “Modulation of Oxygen in NiO:Cu Films Toward a Physical Insight of NiO:Cu/C-Si Heterojunction Solar Cells,” J. Mater. Sci., vol. 53, p. 11684, 2018. [28]M. Li, X. Xu, Y. Xie, H. W. Li, Y. Ma, Y. Cheng, and S. W. Tsang, “Improving the Conductivity of Sol–Gel Derived NiOx with a Mixed Oxide Composite to Realize Over 80% Fill Factor in Inverted Planar Perovskite Solar Cells,” J. Mater. Chem. A, vol. 16, p. 9578, 2019. [29]J. Zheng, L. Hu, J. S. Yun, M. Zhang, C. F. J. Lau, J. Bing, X. Deng, Q. Ma, Y. Cho, W. Fu, C. Chen, M. A. Green, S. Huang, and A. W. Y. H. Baillie, “Solution-Processed, Silver-Doped NiOx as Hole Transporting Layer for High-Efficiency Inverted Perovskite Solar Cells,” ACS Appl. Energy Mater, vol. 2, p. 561, 2018. [30]Y. Wei, K. Yao, X. Wang, Y. Jiang, X. Liu, N. Zhou, and F. Li, “Improving the Efficiency and Environmental Stability of Inverted Planar Perovskite Solar Cells Via Silver-Doped Nickel Oxide Hole-Transporting Layer,” Appl. Surf. Sci., vol. 427, p. 782, 2018. [31]H. Park, S. Kwon, J. S. Lee, H. J. Lim, S. Yoon, and D. Kim, “Improvement on Surface Texturing of Single Crystalline Silicon for Solar Cells by Saw-Damage Etching Using an Acidic Solution,” Sol. Energy Mater. Sol. Cells, vol. 93, p. 1773, 2009. [32]P. K. Singh, R. Kumar, M. Lal, S. N. Singh, and B. K. Das, “Effectiveness of Anisotropic Etching of Silicon in Aqueous Alkaline Solutions,” Sol. Energy Mater. Sol. Cells, vol. 70, p. 103, 2001. [33]J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black Silicon Layer Formation for Application in Solar Cells,” Sol. Energy Mater. Sol. Cells, vol. 90, p. 3085, 2006. [34]E. Cornagliotti, M. Ngamo, L. Tous, R. Russell, J. Horzel, D. Hendrickx, B. Douhard, V. Prajapati, T. Janssens, and J. Poortmans, “Integration of Inline Single-Side Wet Emitter Etch in PERC Cell Manufacturing,” Energy Procedia, vol. 27, p. 624, 2012. [35]Y. Wan, K. R. Mclntosh, and A. F. Thomson, “Characterization and Optimization of PECVD SiNx as an Antireflection Coating and Passivation Layer for Silicon Solar Cells,” AIP Adv., vol. 3, p. 032113, 2013. [36]C. H. Lin, S. Y. Tsai, S. P. Hsu, and M. H. Hsieh, “Investigation of Ag-Bulk/Glassy-Phase/Si Heterostructures of Printed Ag Contacts on Crystalline Si Solar Cells,” Sol. Energy Mater. Sol. Cells, vol. 92, p. 1011, 2008. [37]A. Rohatgi and J. W. Jeong, “High-Efficiency Screen-Printed Silicon Ribbon Solar Cells by Effective Defect Passivation and Rapid Thermal Processing,” Appl. Phys. Lett., vol. 82, p. 224, 2003. [38]L. J. Huang and W. M. Lau, “Effects of HF Cleaning and Subsequent Heating on the Electrical Properties of Silicon (100) Surfaces,” Appl. Phys. Lett., vol. 60, p. 1108, 1992. [39]A. N. Mansour, “Characterization of NiO by XPS,” Surf. Sci. Spectra, vol. 3, p. 231, 1994. [40]K. Anandan and V. Rajendran, “Morphological and Size Effects of NiO Nanoparticles Via Solvothermal Process and Their Optical Properties,” Mater. Sci. Semicond. Process., vol. 14, p. 43, 2011. [41]S. B. Simonsen, K. Agersted, K. V. Hansen, T. Jacobsen, J. B. Wagner, T. W. Hansen, and L. T. Kuhn, “Environmental TEM Study of the Dynamic Nanoscaled Morphology of NiO/YSZ During Reduction,” Appl. Catal., A, vol. 489, p. 147, 2015. [42]D. Zhang, W. Zheng, R. Lin, Y. Li, and F. Huang, “Ultrahigh EQE (15%) Solar-Blind UV Photovoltaic Detector with Organic–Inorganic Heterojunction Via Dual BuiltIn Fields Enhanced Photogenerated Carrier Separation Efficiency Mechanism,” Adv. Funct. Mater., vol. 29, p. 1900935, 2019.
|