|
[1]Miranda, P. E. V. d., Science and Engineering of Hydrogen-Based Energy Technologies. 2018: Academic Press. [2]鎮江, 燃料電池. 2005: 全華出版社. [3]Dekel, D. R., Review of cell performance in anion exchange membrane fuel cells. Journal of Power Sources, 2018. 375: p. 158-169. [4]Peighambardoust, S. J., Rowshanzamir, S., and Amjadi, M., Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 2010. 35(17): p. 9349-9384. [5]余炫宏, 離子交換膜特性與催化劑應用於鹼性陰離子交換膜燃料電池研究. 2020, 國立中興大學精密工程研究所. [6]Wang, C. T., Tsai, C. H., Tu, M. H., Lai, C. M., Lin, J. N., and Tsai, L. D., The Development Status of Anion Exchange Membrane Fuel Cell Technology. 工業材料雜誌, 2016. 355: p. 85-96. [7]Center, L. B. J. S., Houston, and Texas, Alternative Electrochemical Systems for Ozonation of Water. NASA Tech Briefs, 2003: p. 24-25. [8]李存璞, 陳嘉佳, 李莉, and 魏子棟, 燃料電池關鍵材料與進展. 科技導報, 2017. 35(8): p. 19-25. [9]碳纖維布. https://www.lithmachine.com/graphite-felt_c41 [10]碳纖維紙. https://www.spvtime.com/76481/ [11]雙極板. https://www.alibaba.com/product-detail/Carbon-Graphite-Bipolar-Plates-For-Hydrogen_60507686936.html. [12]Morozan, A., Jousselmea, B., and Palacin, S., Low-platinum and platinum-free catalysts for the oxygenreduction reaction at fuelcell cathodes. Energy & Environmental Science, 2011(4): p. 1238-1254. [13]Kinoshita, K., Electrochemical Oxygen Technology. 1992: Wiley. [14]Zhang, J., PEM Fuel Cell Electrocatalysts and Catalyst Layers : Fundamentals and Applications. 2008: Springer, London. [15]Ma, Z. F., Xie, X. Y., Ma, X. X., Zhang, D. Y., Ren, Q. N., Heß-Mohr, and Schmidt, V.M., Electrochemical characteristics and performance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell. Electrochemistry Communications, 2006. 8(3): p. 389-394. [16]Yu, X. and Ye, S., Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. Journal of Power Sources, 2007. 172(1): p. 145-154. [17]Zhu, H., Li, X., and Wang, F., Synthesis and characterization of Cu@Pt/C core-shell structured catalysts for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2011. 36(15): p. 9151-9154. [18]JASINSKI, R., A New Fuel Cell Cathode Catalyst. Nature, 1964. 201: p. 1212-1213. [19]Proietti, E., Jaouen, F., Lefèvre, M., Larouche, N., Tian, J., Herranz, J., and Dodelet, J.-P., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nature Communications, 2011. 2(1): p. 416. [20]Liang, Y., Li, Y., Wang, H., Zhou, J., Wang, J., Regier, T., and Dai, H., Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Materials, 2011. 10(10): p. 780-786. [21]Nie, Y., Li, L., and Wei, Z., Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chemical Society Reviews, 2015(8): p. 2168-2201. [22]Liang, H. W., Wei, W., Wu, Z. S., Feng, X., and Müllen, K., Mesoporous Metal–Nitrogen-Doped Carbon Electrocatalysts for Highly Efficient Oxygen Reduction Reaction. Journal of the American Chemical Society, 2013. 135(43): p. 16002-16005. [23]Liang, W., Chen, J., Liu, Y., and Chen, S., Density-Functional-Theory Calculation Analysis of Active Sites for Four-Electron Reduction of O2 on Fe/N-Doped Graphene. ACS Catalysis, 2014. 4(11): p. 4170-4177. [24]Wu, Z. Y., Xu, X. X., Hu, B. C., Liang, H. W., Lin, Y., Chen, L. F., and Yu, S. H., Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie International Edition, 2015. 54(28): p. 8179-8183. [25]Su, X., Yao, Y., Tian, J., Liu, J., Wang, Z., You, Y., Huang, L., and Wu, C., Investigation of the durability of a poly-p-phenylenediamine/carbon black composite for the oxygen reduction reaction. Chinese Journal of Catalysis, 2016. 37(7): p. 1096-1102. [26]郭洋銘, 聚亞胺系煅燒型鐵氮碳化合物作為質子交換膜燃料電池陰極觸媒之研究. 2020, 國立高雄科技大學化學工程與材料工程系. [27]Wen, S., Huang, G., Wu, S., Li, J., and Qu, A., Determinant factors of photocatalytic hydrogen evolution activity for Schiff-base conjugated polymers. Chemical Engineering Journal, 2019. 374: p. 1055-1063. [28]Knöpke, L. R., Nemati, N., Köckritz, A., Brückner, A., and Bentrup, U., Reaction Monitoring of Heterogeneously Catalyzed Hydrogenation of Imines by Coupled ATR-FTIR, UV/Vis, and Raman Spectroscopy. ChemCatChem, 2010. 2(3): p. 273-280. [29]Saravana Ganesan, N. and Suresh, P., Synthesis of β-Amino Ketones using graphene oxide: a benign carbonaceous acid catalyst for Mannich reaction. Research on Chemical Intermediates, 2021. 47(3): p. 1197-1210. [30]Shamna, S., Afsina, C. M. A., Philip, R. M., and Anilkumar, G., Recent advances and prospects in the Zn-catalysed Mannich reaction. RSC Advances, 2021. 11(16): p. 9098-9111. [31]Zhong, D., Liu, S., Zhang, G., and Wang, E. G., Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission. Journal of Applied Physics, 2001. 89(11): p. 5939-5943. [32]Mabena, L. F., Sinha Ray, S., Mhlanga, S. D., and Coville, N. J., Nitrogen-doped carbon nanotubes as a metal catalyst support. Applied Nanoscience, 2011. 1(2): p. 67-77. [33]Ewels, C. P. and Glerup, M., Nitrogen Doping in Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2005. 5: p. 1345-1363. [34]Lin, L., Zhu, Q., and Xu, A. W., Noble-Metal-Free Fe–N/C Catalyst for Highly Efficient Oxygen Reduction Reaction under Both Alkaline and Acidic Conditions. Journal of the American Chemical Society, 2014. 136(31): p. 11027-11033. [35]Sing, K., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry - PURE APPL CHEM, 1982. 54: p. 2201-2218. [36]Voort, P. V. D., Leus, K., and Canck, E. D., Introduction to Porous Materials. 2019: Wiley. [37]Ohms, D., Herzog, S., Franke, R., Neumann, V., Wiesener, K., Gamburcev, S., Kaisheva, A., and Iliev, I., Influence of metal ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile. Journal of Power Sources, 1992. 38(3): p. 327-334. [38]Bashyam, R. and Zelenay, P., A class of non-precious metal composite catalysts for fuel cells. Nature, 2006. 443(7107): p. 63-66. [39]Shakir, M., Chishti, H. T., and Chingsubam, P., Metal ion-directed synthesis of 16-membered tetraazamacrocyclic complexes and their physico-chemical studies. Spectrochim Acta A Mol Biomol Spectrosc, 2006. 64(2): p. 512-7. [40]Feng, Y. and Alonso-Vante, N., Nonprecious metal catalystsfor the molecularoxygen-reduction reaction. Physica Status Solidi (b), 2008. 245. [41]Lu, G., Yang, H., Zhu, Y., Huggins, T., Ren, Z. J., Liu, Z., and Zhang, W., Synthesis of a conjugated porous Co(ii) porphyrinylene–ethynylene framework through alkyne metathesis and its catalytic activity study. Journal of Materials Chemistry A, 2015(9): p. 4954-4959. [42]Zhang, R., He, S., Luab, Y., and Chen, W.,Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. Journal of Materials Chemistry A, 2015(7). [43]Moghaddam, R. B., Shahgaldi, S., and Li, X., A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application. Frontiers in Energy, 2017. 11(3): p. 245-253. [44]黃信惟, 以聚苯胺與鐵所形成的螯合物作為質子交換膜燃料電池因及觸媒之研究. 2018, 國立高雄科技大學化學工程與材料工程系. [45]Gao, Y., Wang, L., Li, G., Xiao, Z., Wang, Q., and Zhang, X., Taming transition metals on N-doped CNTs by a one-pot method for efficient oxygen reduction reaction. International Journal of Hydrogen Energy, 2018. 43(16): p. 7893-7902. [46]謝晉丞, 對苯二胺系鐵碳氮化合物作為燃料電池陰極觸媒之研究. 2019, 國立高雄科技大學化學工程與材料工程系. [47]Wang, J., Wang, Q., She, W., Xie, C., Zhang, X., Sun, M., Xiao, J., and Wang, S., Tuning the electron density distribution of the Co-N-C catalysts through guest molecules and heteroatom doping to boost oxygen reduction activity. Journal of Power Sources, 2019. 418: p. 50-60. [48]Cui, X., Lei, S., Wang, A. C., Gao, L., Zhang, Q., Yang, Y., and Lin, Z., Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy, 2020. 70: p. 104525.
|