|
[1]Małgorzata Norek ,2019, “Approaches to enhance UV light emission in ZnO nanomaterials”,Current Applied Physics , 19, 8, pp. 867-883, August. [2]S.A. Hasan, H. Torun, D. Gibson, Q. Wu, M. D. Cooke, YongQing Fu, “Flexible UV sensor based on nanostructured ZnO thin film SAW device”, 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), pp. 85-90. [3]C. Muller, D. Moreau, D. Fonteyn, et al, 2001, “SPICAM-light on Mars-Express as a monitor of surface UV radiation and atmospheric oxidants”, Planet Space Sci, 49, pp. 165-171. [4]M. Razeghi, A. Rogalski, 1996, “Semiconductor ultraviolet detectors”, J Appl Phys, 79, pp. 7433-7473. [5]L.W. Sang, M.Y. Liao, M. Sumiya, 2013, “A Comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures”, Sensors, 13, pp. 10482-10518. [6]S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, 2005, “Recent progress in processing and properties of ZnO”, Prog. Mater. Sci, 50, pp. 293-340. [7]C. Jagadish, S.J. Pearton (Eds.), 2006, “ZnO Bulk, Thin Films and Nanostructures”, Elsevier, Oxford,UK. [8]O. Yamazaki, T. Mitsuyu, K. Wasa, 1980, “ZnO thin-film SAW devices”, IEEE Trans. Sonics Ultrason, 6, pp. 369-378. [9]F.S. Hickernell, 1985, “Zinc oxide films for acoustoelectric device applications”, IEEE Trans. Sonics Ultrason, 5, pp. 621-629. [10]Z.L. Wang, 2007, “Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing”, Appl. Phys. A, 88 (1), pp. 7-15. [11]M.C. Jeong, B.Y. Oh, W. Lee, J.M. Myoung, 2005, ”Optoelectronic properties of three-dimensional ZnO hybrid structure”, Appl. Phys. Lett, 86, p. 103-105. [12]J. H. Visser, 1989, “Surface acoustic wave filter in ZnO-SiO2-Si layered structures: Design technology and monolithic integration with electronic circuitry”. [13]D.S.Ballantine, R.M. White, 1997, “Acoustic Wave Sensors—Theory, Design and Physico-chemical Applications”, Academic Press, New York. [14]A. Pohi, 2004, “A review of wireless SAW sensors”, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47 (2), pp. 317-332. [15]Q. Fu , 2005, Wireless passive SAW sensors using single-electrode-type IDT structures as programmable reflectors, Sens. Actuators A, 122, pp. 203-208. [16]D.M. Oglesby, B.T. Upchurch, B.D. Leighty, 1994, “Surface acoustic wave oxygen pressure sensor”, Natl. Aeronaut. Symp. Adm. Rep., April. [17]A. Pohl, G. Ostermayer, L. Reindl, F. Seifert, 1997, “Monitoring the tire pressure at cars using passive SAW sensors”, IEEE Ultrason Symp. Proc. Int. Symp, vol.1, pp 471-474. [18]M. Benetti, D. Cannata, F. Di Pietrantonio, C. Marchiori, P. Persichetti, E. Verona, 2008, “Pressure sensor based on surface acoustic wave resonators”, IEEE Sens, pp. 1024-1027. [19]F. Della Lucia, P. Zambrozi, F. Frazatto, M. Piazzetta, A. Gobbi, 2014, “Design, fabrication and characterization of SAW pressure sensors for extreme operation conditions”, Procedia Eng, vol. 87, pp. 540-543. [20]X.Q. Bao, W. Burkhard, V.V. Varadan, V.K. Varadan, 1987, “SAW temperature sensor and remote reading system”, IEEE 1987 Ultrason Symp, pp. 583-586. [21]C. Li, X. Liu, L. Shu, Y. Li, 2015, “AlN-based surface acoustic wave resonators for temperature sensing applications” , Mater. Express, pp. 367-370. [22]T. Nomura, T. Yasuda, S. Furukawa, 1994, “Humidity sensor using surface acoustic waves propagating along layered structures”, IEEE MIT-S Int. Microwave Symp. Dig, pp. 509-512. [23]T.T. Wu, Y.Y. Chen, T.H. Chou, 2008, “A high sensitivity nanomaterial based SAW humidity sensor”, J. Phys. D: Appl. Phys, vol. 41, p. 085101. [24]V.I. Anisimkim, M. Penza, A. Valentini, F. Quaranta, L. Vasanelli, 1995, “Detection of combustible gases by means of a ZnO-on-Si surface acoustic wave (SAW) delay line”, Sens. Actuators B: Chem, vol. 23, pp. 197-201. [25]M. Penza, V.I. Anisimkin, S.A. Maximov, L. Vasanelli, 1997, “Selective gas detection using uncoated SAW delay lines”, Sens. Actuators B: Chem, vol .42, pp. 103-107. [26]Y.-S. Huang, Y.-Y. Chen, T.-T. Wu, 2010, “A passive wireless hydrogen surface acoustic wave sensor based on Pt-coated ZnO nanorods”, Nanotechnology, vol. 21, p. 95503. [27]M.C.Horrillo, M.J.Fernández, J.L.Fontecha, I.Sayago, M.García, M.Aleixandre, J.Gutiérrez, I.Gràcia, C.Cané, 2006, “Optimization of SAW sensors with a structure ZnO–SiO2–Si to detect volatile organic compounds”, Sens and Actu : Chem, vol. 118, pp. 356-361. [28]Y.-G. Zhao, M. Liu, D.-M. Li, J.-J. Li, J.-B. Niu, 2009, “FEM modeling of SAW organic vapor sensors”, Sens. Actuators A: Phys, vol. 154, pp. 30-34. [29]K. Chen, D. Liu, L. Nie, S. Yao, 1994, “Determination of urea in urine using a conductivity cell with surface acoustic wave resonator-based measurement circuit”, Tandlakartidningen, vol. 41, pp. 2195-2200. [30]K. Länge, B.E. Rapp, M. Rapp, 2008, “Surface acoustic wave biosensors: a review”, Anal. Bioanal. Chem, vol. 391, pp. 1509-1519. [31]I.Y. Huang, M.C. Lee, 2008, “Development of a FPW allergy biosensor for human IgE detection by MEMS and cystamine-based SAM technologies”, Sens. Actuators B: Chem, vol. 132, pp. 340-348. [32]M.-I. Rocha-Gaso, C. March-Iborra, Á. Montoya-Baides, A. Arnau-Vives, 2009, “Surface generated acoustic wave biosensors for the detection of pathogens: a review”, Sensors, pp. 5740-5769. [33]D.T. Phan, G.S. Chung, 2011, “SAW UV sensors using ZnO nanorods grown on AlN/Si structures”, Proc. IEEE Sens, pp. 335-337. [34]D.T. Phan, G.S. Chung, 2012, “Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode”, Curr. Appl. Phys, vol. 12, pp. 210-213. [35]P. Sharma, K. Sreenivas, 2014, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter”, Appl. Phys. Lett, vol. 83, pp. 3617-3619. [36]K. F. Graff, 1981, “A history of ultrasonics” Physicacl Acoustics: Principles and Method, 15, 1, pp. 1-97. [37]J. Curie, P. Curie, 1880, “Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclines”, Comptes Rendus de l’Académie des Sciences, pp. 91-294. [38]L. Rayleigh,1885, “On waves propagated along the plane surface of an elastic solid”, Proc. London Math. Soc., 17, pp. 4-11. [39]M. F. Lewis, 1965, “On Rayleigh waves and related propagating acoustic waves”, Rayleigh-Wave Theory and Application, pp. 37-58. [40]W. S. Mortley, 1963, British patent 988,102. Also, J. H. Rowen, 1963, U.S. Patent 3,289,114. [41]J. H. Rowen, 1966, “Tapped ultrasonic delay line and uses therefore”, U.S. Patent 3 289 144, November. Filed December 24, 1963. [42]G. S. Kino, H. Matthews, 1971, “Signal processing in acoustic surface-wave devices”, IEEE spectrum, pp. 22-35. [43]R. M. White, F. W. Voltmer, 1965, “Direct Piezoelectric Coupling to Surface Elastic Waves”, Appl. Phys. Lett, 7, 12, pp. 314-316, December. [44]J. D. Maines, E. G. S. Paige, 1973, “Surface-acoustic-wave components, devices and applications”, Proc. lEE (lEE Reviews), vol. 120, issue. 10, pp. 1078-1110. [45]M.G. Holland and L. T. Claiborne, 1974, “Practical surface acoustic wave devices”, Proc. IEEE, vol. 62, issue. 5, pp. 582-611. [46]M. F. Lewis, C. L. West, J. M. Deacon, R. F. Humphryes, 1984, “Recent developments in SAW devices”, lEE Proceedings, vol. 131, issue. 4, pp. 186-215, June. [47]C. S. Hartmann, 1985, “Systems Impact of Modern Rayleigh Wave Technology”, Rayleigh-Wave Theory and Application, Spronger, July 15, pp. 238-253. [48]A. Mason, S.C. Mukhopadhyay, K.P. Jayasundera, 2014, “Sensing Technology: Current Status and Future Trends III”, Sensing Technology: Current Status and Future Trends III, Springer. [49]C. Kohl, T. Wagner, 2006, “Gas sensing fundamentals”, Springer Ser. Chem. Sensors Biosens. [50]Y. Takagaki, P.V. Santos, E. Wiebicke, O. Brandt, H.-P. Schönherr, K.H. Ploog, 2002, “Superhigh-frequency surface-acoustic-wave transducers using AlN layers grown on SiC substrates Superhigh-frequency surface-acoustic-wave transducers using AlN layers grown on SiC substrates”, Appl. Phys. Lett., 81, pp. 2538-2540. [51]Z. L. Wang, 2004, “Zinc oxide nanostructures: growth, properties and applications”, Journal of Physics: Condensed Matter, vol.16. [52]M. A. Borysiewicz, 2019, “ZnO as Functional Material, A Review”, Crystals 2019, 9(10), 505. [53]S. Kumar, G.H. Kim, K. Sreenivas, R.P. Tandon, 2009, “ZnO based surface acoustic wave ultraviolet photo sensor”, J. Electroceram., 22, pp. 198-202. [54]P. Sharma, K. Sreenivas, 2003, “Highly sensitive ultraviolet detector based on ZnO/LiNbO3 hybrid surface acoustic wave filter”, Appl. Phys. Lett., 83, pp. 3617-3619. [55]D.T. Phan, G.S. Chung, 2012, “Characteristics of SAW UV sensors based on a ZnO/Si structure using third harmonic mode”, Curr. Appl. Phys., 12, pp. 210-213. [56]Y.J. Guo, C. Zhao, X.S. Zhou, Y. Li, X.T. Zu, D. Gibson, Y.Q. Fu, 2015, “Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices”, Smart Mater. Struct., 24, Article 125015. [57]W.Li, Y.J.Guo, Q.B.Tang, X.T.Zu, J.Y.Ma, L.Wang, K.Tao, H.Torun, Y.Q.Fue, 2019, “Highly sensitive ultraviolet sensor based on ZnO nanorod film deposited on ST-cut quartz surface acoustic wave devices”, Surf Coat Technol, 363, pp. 419-425. [58]W.B. Peng, Y.N. He, X.L. Zhao, 2013, “Study on the performance of ZnO nanomaterial-based surface acoustic wave ultraviolet detectors”, J Micromech Microeng, 23, Article 125008. [59]W.B. Peng, Y.N. He, C.B. Wen, K. Ma, 2012, “Surface acoustic wave ultraviolet detector based on zinc oxide nanowire sensing layer”, Sens Actuator A-Phys, 184, pp. 34-40. [60]H.F. Pang, Y.Q. Fu, Z.J. Li, et al., 2013, “Love mode surface acoustic wave ultraviolet sensor using ZnO films deposited on 36°Y-cut LiTaO3” ,Sens Actuator A-Phys, 193, pp. 87-94. [61]C.L. Wei, Y.C. Chen, C.C. Cheng, et al, 2010, “Highly sensitive ultraviolet detector using a ZnO/Si layered SAW oscillator”, Thin Solid Films, 518, pp. 3059-3062. [62]A. J. Slobodnik, Jr., 1978, “Materials and their inlluence on performance.” Chapter 6 in Acoustic Surface Waves. Topics in Applied Physics, vol. 24. Berlin: Springer Verlag, ch.6, pp. 226-303. [63]C.S. Hartmann ; D.T. Bell ; R.C. Rosenfeld, 1973, “Impulse Model Design of Acoustic Surface-Wave Filters”, IEEE Transactions on Microwave Theory and Techniques, Vol. 21, Issue. 4, pp. 162-175, IEEE, Apr. [64]J. D. Plummer, M. D. Deal, P. B. Griffin, 2000, “Silicon VLSI Technology: Fundamentals, Practice and Modeling”, Pearson College Div. [65]J. W. Gardner, V. K. Varadan, O. O. Awadelkarim, 2001, “Microsensors MEMS and Smart Devices”, Willy, pp. 303-316. [66]K. Nakamura, M. Kazumi, H. Shimizu, 1977, “SH-type and Rayleigh-type surface waves on rotated Y-cut LiTaO3”, Proc. IEEE Ultrasonics Symp., 2, pp. 819-822. [67]G. Kovacs, A. Venema, 1992, “Theoretical comparison of sensitivities of acoustic shear wave modes for (bio)chemical sensing in liquids”, Appl. Phys. Lett., 61, pp. 639–641. [68]P. Tournois, C. Lardat, 1969, “Love Wave-Dispersive Delay Lines for Wide-Band Pulse Compression”, Trans. Sonic Ultrasonics, SU-16, pp. 107-117. [69]J. Du, G.L.Harding, A. Ogilvy, P. R. Dencher, M. Lake, 1996, “A study of Love-wave acoustic sensors”, Sensors and Actuators A, 56, pp. 211–219. [70]J. A. Thornton, 1974, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings” , J.Vac. Sci. Technol., vol. 11, pp. 666-670. [71]H. A. Jehn, 1992, “ Nucleation and Growth of Thin Films” , Advanced Techniques for Surface Engineering, vol. 1, pp. 5-29. [72]R. H. Parmenter, 1953, “The Acousto-electric effect”, Phys Rev, 89, pp.990-998. [73]A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus, 1989, “Surface acoustic waves on GaAs/AlxGa1–xAs heterostructures”, Phys Rev B, 40, pp. 7874-7887. [74]M. Rotter, A. Wixforth, W. Ruile, D. Bernklau, H. Riechert, 1998, “Giant acoustoelectric effect in GaAs/LiNbO3 hybrids”, Appl Phys Lett, 73, pp. 2128-2130. [75]J.D.N. Cheeke, Z. Wang, 1999, “Acoustic wave gas sensors”, Sens Actuator B-Chem, 59, pp. 146-15. [76]S. Deki, and Y. Aoi, 1998, “Synthesis of metal oxide thin films by liquid-phasedeposition method”, J. Mater., vol. 13, p883-890. [77]R. A. Laudise and A. A. Ballman, 1960, “Hydrothermal Synthesis of Zinc Oxide And Zinc Sulfide”, J. Phys. Chem., 64(5), p688-691. [78]W. J. Li, E. W. Shi, W. Z. Zhong, and Z. W. Yin, 1999, “Growth mechanism and growth habit of oxide crystals”, J. Crystal Growth. vol. 203, p186-196. [79]Y. Tong, Y. Liu, L. Dong, D. Zhao, Ji. Zhang, Y. Lu, D. Shen, and X. Fan, 2006, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique”, J. Phys. Chem. B, 110(41), p20263-20267. [80]關永宏, 2001,通訊雜誌九十三期. [81]J. Song, S. Lim, 2007, “ Effect of Seed Layer on the Growth of ZnO Nanorods”, J. Phys. Chem. C, 111, 2, pp. 596–600.
|