[1]sub Song, K., & Chu, P. C. (2012). Conceptual design of future undersea unmanned vehicle (UUV) system for mine disposal. IEEE Systems Journal, 8(1), 43-51.
[2]Greenlaw, J. (2013). Sea mines and naval mine countermeasures: are autonomous underwater vehicles the answer, and is the Royal Canadian Navy ready for the new paradigm. Canadian forces college.
[3]Sariel, S., Balch, T., & Erdogan, N. (2008). Naval mine countermeasure missions. IEEE Robotics & Automation Magazine, 15(1), 45-52.
[4]Sánchez-Pérez, J. F., Mascaraque-Ramírez, C., Nicolás, J. A. M., Castro, E., & Cánovas, M. (2021). Study of the application of PCM to thermal insulation of UUV hulls using Network Simulation Method. Alexandria Engineering Journal, 60(5), 4627-4637.
[5]Cho, S.-R., Muttaqie, T., Do, Q. T., Kim, S., Kim, S. M., & Han, D.-H. (2018). Experimental investigations on the failure modes of ring-stiffened cylinders under external hydrostatic pressure. International Journal of Naval Architecture and Ocean Engineering, 10(6), 711-729.
[6]Cho, S.-R., Muttaqie, T., Do, Q. T., So, H. Y., & Sohn, J.-M. (2018). Ultimate strength formulation considering failure mode interactions of ring-stiffened cylinders subjected to hydrostatic pressure. Ocean Engineering, 161, 242-256.
[7]Sahoo, A., Dwivedy, S. K., & Robi, P. (2019). Advancements in the field of autonomous underwater vehicle. Ocean Engineering, 181, 145-160.
[8]Prabhakar, M. M., Rajini, N., Ayrilmis, N., Mayandi, K., Siengchin, S., Senthilkumar, K., . . . Ismail, S. O. (2019). An overview of burst, buckling, durability and corrosion analysis of lightweight FRP composite pipes and their applicability. Composite Structures, 230, 111419.
[9]Li, B., Pang, Y.-j., Cheng, Y.-x., & Zhu, X.-m. (2017). Collaborative optimization for ring-stiffened composite pressure hull of underwater vehicle based on lamination parameters. International Journal of Naval Architecture and Ocean Engineering, 9(4), 373-381.
[10]Buchan, P., & Chen, J. F. (2007). Blast resistance of FRP composites and polymer strengthened concrete and masonry structures–A state-of-the-art review. Composites Part B: Engineering, 38(5-6), 509-522.
[11]Windenburg, D. F., & Trilling, C. (1934). Collapse by instability of thin cylindrical shells under external pressure. Trans. Asme, 11, 819-825.
[12]Von Mises, R., & Windenburg, D. (1933). The critical external pressure of cylindrical tubes under uniform radial and axial load: DAVID TAYLOR MODEL BASIN WASHINGTON DC.
[13]Wei, R., Shen, K., & Pan, G. (2021). Optimal design of trapezoid stiffeners of composite cylindrical shells subjected to hydrostatic pressure. Thin-Walled Structures, 166, 108002.
[14]Lopatin, A., & Morozov, E. (2015). Buckling of the composite sandwich cylindrical shell with clamped ends under uniform external pressure. Composite Structures, 122, 209-216.
[15]Standard, B. (2002). PD5500 Unfired Pressure Vessel.
[16]Southwell, R. V. (1914). V. On the general theory of elastic stability. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 213(497-508), 187-244.
[17]Hao, P., Wang, B., Li, G., Meng, Z., Tian, K., & Tang, X. (2014). Hybrid optimization of hierarchical stiffened shells based on smeared stiffener method and finite element method. Thin-Walled Structures, 82, 46-54.
[18]Castro, S. G., Zimmermann, R., Arbelo, M. A., Khakimova, R., Hilburger, M. W., & Degenhardt, R. (2014). Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells. Thin-Walled Structures, 74, 118-132.
[19]Liu, D., Zhu, H., Liu, F., Cao, J., Ding, Z., & Zhang, Y. (2022). Buckling failure analysis of PMMA spherical pressure hull. Ocean Engineering, 245, 110465.
[20]Craven, R., Graham, D., & Dalzel-Job, J. (2016). Conceptual design of a composite pressure hull. Ocean Engineering, 128, 153-162.
[21]Prasanna, A. B., Raju, K. S., Ramji, K., & Satish, P. (2017). Free Vibration, Buckling and Design Optimisation of Composite Pressure Hulls. Materials Today: Proceedings, 4(8), 7381-7387.
[22]Imran, M., Shi, D., Tong, L., & Waqas, H. M. (2019). Design optimization of composite submerged cylindrical pressure hull using genetic algorithm and finite element analysis. Ocean Engineering, 190, 106443.
[23]Imran, M., Shi, D., Tong, L., Waqas, H. M., & Uddin, M. (2021). Design optimization of composite egg-shaped submersible pressure hull for minimum buoyancy factor. Defence Technology, 17(6), 1817-1832.
[24]Cole, R. H., & Weller, R. (1948). Underwater explosions. Physics Today, 1(6), 35.
[25]Pan, X., Wang, G., Lu, W., Yan, P., Chen, M., & Gao, Z. (2022). The effects of initial stresses on nonlinear dynamic response of high arch dams subjected to far-field underwater explosion. Engineering Structures, 256, 114040.
[26]Wang, G., Wang, Y., Lu, W., Zhou, W., Chen, M., & Yan, P. (2016). On the determination of the mesh size for numerical simulations of shock wave propagation in near field underwater explosion. Applied Ocean Research, 59, 1-9.
[27]Zhang, Q.-L., Li, D.-Y., Wang, F., & Li, B. (2018). Numerical simulation of nonlinear structural responses of an arch dam to an underwater explosion. Engineering Failure Analysis, 91, 72-91.
[28]徐慶瑜, 梁卓中, 鄧作樑, 陳俊良, 阮海英. (2015). 環向內肋及外肋加勁圓筒型壓力殼承受水下爆震負荷之動態反應研究. 中華民國振動與噪音工程學會論文集, 308-315.
[29]Ramajeyathilagam, K., & Vendhan, C. (2004). Deformation and rupture of thin rectangular plates subjected to underwater shock. International Journal of Impact Engineering, 30(6), 699-719.
[30]Qiankun, J., & Gangyi, D. (2011). A finite element analysis of ship sections subjected to underwater explosion. International Journal of Impact Engineering, 38(7), 558-566.
[31]Wang, H., Zhu, X., Cheng, Y. S., & Liu, J. (2014). Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse. Marine Structures, 39, 90-117.
[32]Lu, Z., & Brown, A. (2021). Surrogate approaches to predict surface ship response to far-field underwater explosion in early-stage ship design. Ocean Engineering, 225, 108773.
[33]Keil, A. (1961). The response of ships to underwater explosions: David Taylor Model Basin Washington DC.
[34]Yapar, O., & Basu, P. (2022). Fluid-structure interaction simulation of the effects of underwater explosion on submerged structures. Finite Elements in Analysis and Design, 199, 103678.
[35]Liang, C.-C., & Tai, Y.-S. (2006). Shock responses of a surface ship subjected to noncontact underwater explosions. Ocean Engineering, 33(5-6), 748-772.
[36]黃詠芯. (2017). PD-5500 規範應用於小型潛艇結構設計.碩士論文-國立高雄科技大學造船及海洋工程研究所.[37]羅光閔, 黃詠芯, 梁卓中, 徐慶瑜. (2016). 環肋尺寸比例對壓力殼挫曲強度影響之探討. 中國造船暨輪機工程學刊, 35(3), 123-133.
[38]Hibbitt, H., Karlsson, B., & Sorensen, P. (2011). Abaqus analysis user’s manual version 6.10. Dassault Systèmes Simulia Corp.: Providence, RI, USA.
[39]Luo, G.-M., & Hsu, Y.-C. (2018). Nonlinear buckling strength of out-of-roundness pressure hull. Thin-Walled Structures, 130, 424-434.
[40]羅光閔. (2003). 小型潛艇壓力殼耐壓強度之硏究.碩士論文-國立臺灣大學工學院工程科學及海洋工程學系暨研究所.[41]Hydroid. REMUS 300M – Mine Countermeasures Variant. 2022, from https://tsd.huntingtoningalls.com/what-we-do/unmanned-systems/unmanned-underwater-vehicles/remus300m/
[42]Junior, V. L. J., Ramirez, I. S., Marquez, F. P. G., & Papaelias, M. (2021). Numerical evaluation of type I pressure vessels for ultra-deep ocean trench exploration. Results in Engineering, 11, 100267.
[43]Zhang, X., Li, Z., Wang, P., & Pan, G. (2022). Experimental and numerical analyses on buckling and strength failure of composite cylindrical shells under hydrostatic pressure. Ocean Engineering, 249, 110871.
[44]Ye, L., & Feng, P. (2007). UNIFIED DEFINITION OF SAFETY FACTORS FOR TRADITIONAL RC MEMBERS AND MEMBERS INCORPORATING FRP.
[45]科技部海洋學門資料庫. (2021). 台灣周圍海域地形圖. https://www.odb.ntu.edu.tw/bathy/colorimages/
[46]林依慧. (2017). FRP 船舶 T 型接合承受非接觸性水下爆炸之接頭設計. 碩士論文-國立高雄海洋科技大學造船及海洋工程研究所.[47]黃郁超. (2019). 潛艦外殼對壓力殼爆震防護能力之研究. 碩士論文-國立高雄科技大學造船及海洋工程研究所.