|
[1] S. Saadi et al., Photocatalytic Hydrogen Evolution Over CuCrO2, Sol. Energy, 2006, 80, 272-280. [2] W. Ketir et al., NO3- Removal with a New Delafossite CuCrO2 Photocatalyst, Desalination, 2009, 244, 144-152. [3] T.W. Chiu et al., Antibacterial Property of CuCrO2 Thin Films Prepared by RF Magnetron Sputtering Deposition, Vacuum, 2013, 87, 174-177. [4] 石英片,百度百科,網址:https://baike.baidu.com/item/%E7%9F%B3%E8%8B%B1%E7%89%87 [5] M. Sakai et al., Monodisperse silica nanoparticle-carbon black composite microspheres as photonic pigments, ACS Applied Nano Materials, 2020, 3, 7047-7056. [6] Y. Shu, Study on etching process of fused silica with concentrated HF, Optik, 2019, 178, 544-549. [7] W. Dai et al., Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica, Optics and Lasers in Engineering, 2011, 49, 273-280. [8] M. A. Marquardt et al., Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films, 2006, 496, 146-156. [9] C. Ruttanapun et al., Alcohol sensing of p-type CuFeO2 delafossite oxide, International Conference on Photonics Solutions, 2013, 8883, 8883L-1. [10] S. Tao et al., Preparation and gas-sensing properties of CuFe2O4 at reduced Temperature, Materials Science and Engineering: B, 2000, 77, 172-176. [11] X. Wang et al., Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites, Sensors and Actuators B: Chemical, 2020, 499, 166201. [12] Z. Cao et al., One step for synthesis of magnetic CuFe2O4 composites as photo-fenton catalyst for degradation organics, Materials Chemistry and Physics, 2019, 237, 121842. [13] A. Yengantiwar et al., Delafossite CuFeO2 photocathodes grown by direct liquid injection chemical vapor deposition for efficient photoelectrochemical water reduction, Journal of The Electrochemical Society, 2018, 165, H831-H837. [14] N. M. Mahmoodi, Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method, Desalination, 2011, 270, 332-337. [15] R. Peymanfar et al., Preparation and characterization of CuFe2O4 nanoparticles by the sol-gel method and investigation of its microwave absorption properties at Ku-band frequency using silicone rubber, Materials Science, 2018, 2, 1155. [16] 謝廣文等人,農業自動化叢書第十二輯-機電整合,2004,12-28。 [17] R. Shabannia, High-sensitivity UV photodetector based on oblique and vertical co-doped ZnO nanorods, Materials Letters, 2018, 214, 254-256. [18] 吳泉毅等人,奈米半導體材料之氣體感測性質。 [19] 李建興等人,二氧化碳雷射管之製作與應用,科儀新知,2004,25,40-48。 [20] 曾釋鋒等人,高功率二氧化碳雷射切割金屬材料模擬與分析,科儀新知,2008,29,50-57。 [21] Steven T. Yang et al., Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica, Applied Optics, 2010, 49, 2606-2616. [22] R. Kitamura et al., Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature, Applied Optics, 2007, 46, 8118–8133. [23] Z. Yinchao et al., Assessment of high-purity quartz glass by laser induced fluorescence technique, Proceedings of the SPIE, 2019, 11063, 11630N. [24] D. A. Coucheron et al., Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres, Nature Communications, 2016, 7, 13625. [25] M. Vlasova et al., Monitoring of the morphologic reconstruction of deposited ablation products in laser irradiation of silicon, Science of Sintering, 2008, 40, 69-78. [26] D. Nieto et al., Single-pulse laser ablation threshold of borosilicate, fused silica, sapphire, and soda-lime glass for pulse widths of 500 fs, 10 ps, 20 ns, Applied Optics, 2015, 54, 8596-8601. [27] S. S. Harilal et al., Morphological changes in ultrafast laser ablation plumes with varying spot size, Optical Society of America, 2015, 23, 15608-15615. [28] T. Kurzynowski et al., Parameters in Selective Laser Melting for processing metallic powders, SPIE, 2012, 8239, 823914-1-823914-6. [29] 鄭中緯等人,玻璃材料之雷射銲接技術(2)-透過超短脈衝雷射銲接玻璃,雷射光谷推促進網,2019。 [30] 黃榮潭等人,電子能量損失分析技術於奈米尺度材料之分析應用,科儀新知,2005,26,73-86。 [31] 曾文賢等人,高分子與軟質材料奈米結構之穿透式電子顯微鏡分析,科儀新知,2007,29,51-60。 [32]拉曼光譜原理,利泓科技,網址:https://www.rightek.com.tw/product_detail.php?id=186 [33] 楊仲準,X 光繞射分析技術與應用,科儀新知,2011,32,64-74。 [34] J. F. Moulder et al., Handbook of x-ray photoelectron spectroscopy: A reference book of standard spectra for identification and interpretation of XPS data, physical Electronics, 1995, 1-261. [35] N. Liu et al., Selective area in situ conversion of Si (0 0 1) hydrophobic to hydrophilic surface by excimer laser irradiation in hydrogen peroxide, Journal of Physics D Applied Physics, 2014, 47. [36] A. Thogersen et al., Characterization of amorphous and crystalline silicon nanoclusters in ultra thin silica layers, Journal of Applied Physics , 2008, 104, 094315 – 094315-7. [37] R. Córdoba et al., Nanoscale chemical and structural study of co-based FEBID structures by STEM-EELS and HRTEM, Nanoscale Research Letters, 2011, 6, 592. [38] K. Schulmeister et al., TEM investigation on the structure of amorphous silicon monoxide, Journal of Non-Crystalline Solids, 2003, 320, 143-150. [39] 山口喬 ,Cu-Fe-O三元系の相平衡 ,Journal of the Ceramic Association , 1967, 857, 3-11. [1] V. K. Surashe et al., Structural and electrical properties of copper ferrite (CuFe2O4) NPs, Journal of Physics: Conference Series, 2020, 1644, 12025. [2] M. A. Marquardt et al., Crystal chemistry and electrical properties of the delafossite structure, Thin Solid Films, 2006, 496, 146-156. [3] J. Lei et al., The effect of laser sintering on the microstructure, relative density, and cracking of sol‐gel–derived silica thin films, Journal of the American Ceramic Society, 2019, 103, 5666. [4] S. S. Kanakkillam et al., Defects rich nanostructured black zinc oxide formed by nanosecond pulsed laser irradiation in liquid, Applied Surface Science, 2021, 567, 150828. [5] P. Cormont et al., Removal of scratches on fused silica optics by using a CO2 laser, Optics Express, 2013, 21, 28272~28289. [6] L. Robin et al., Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation, 2012, 111, 063106. [7] S. Z. Xu et al., Scan speed and fluence effects in femtosecond laser induced micro/nanostructures on the surface of fused silica, Journal of Non-Crystalline Solids, 492, 2018, 56-62.
|