[1]Huang, W., Sun, H., Luo, J., & Wang, W. (2019). Periodic feature oriented adapted dictionary free OMP for rolling element bearing incipient fault diagnosis. Mechanical Systems and Signal Processing, 126, 137-160.
[2]Razavi-Far, R., & Saif, M. (2016, December). Ensemble of extreme learning machines for diagnosing bearing defects in non-stationary environments under class imbalance condition. In 2016 IEEE Symposium Series on Computational Intelligence (SSCI) (pp. 1-6). IEEE.
[3]Chesser, R. K., & Rodgers, B. E. (2014). Chernobyl. In Encyclopedia of Toxicology: Third Edition (pp. 822-829). Elsevier.
[4]Marples, D. R. (1988). The social impact of the Chernobyl disaster. Springer.
[5]Jan D. (2015). Cracked shaft possible cause of Repower turbine collapse. Windpower Monthly.
[6]Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition monitoring and fault diagnosis of electrical motors—A review. IEEE transactions on energy conversion, 20(4), 719-729.
[7]Zhao, X., Jia, M., & Lin, M. (2020). Deep Laplacian Auto-encoder and its application into imbalanced fault diagnosis of rotating machinery. Measurement, 152, 107320.
[8]Kim, N.-H., An, D., & Choi, J.-H. (2016). Introduction. Prognostics and Health Management of Engineering Systems, 1–24.
[9]Vale, C., Bonifácio, C., Seabra, J., Calçada, R., Mazzino, N., Elisa, M., ... & Grimes, D. (2016). Novel efficient technologies in Europe for axle bearing condition monitoring–the MAXBE project. Transportation Research Procedia, 14, 635-644.
[10]Stancu, A. G., Zhou, L., & Soua, S. (2019). Acoustic Emission-Based Similarity Analysis: A Baseline Convergence Algorithm. Procedia Structural Integrity, 17, 238-245.
[11]Peng, Z., Kessissoglou, N. J., & Cox, M. (2005). A study of the effect of contaminant particles in lubricants using wear debris and vibration condition monitoring techniques. Wear, 258(11-12), 1651-1662.
[12]Wang, Y., Peter, W. T., Tang, B., Qin, Y., Deng, L., Huang, T., & Xu, G. (2019). Order spectrogram visualization for rolling bearing fault detection under speed variation conditions. Mechanical Systems and Signal Processing, 122, 580-596.
[13]Alian, H., Konforty, S., Ben-Simon, U., Klein, R., Tur, M., & Bortman, J. (2019). Bearing fault detection and fault size estimation using fiber-optic sensors. Mechanical Systems and Signal Processing, 120, 392-407.
[14]Kompella, K. D., Mannam, V. G. R., & Rayapudi, S. R. (2016). DWT based bearing fault detection in induction motor using noise cancellation. Journal of Electrical Systems and Information Technology, 3(3), 411-427.
[15]Kim, Y. H., Tan, A. C., Mathew, J., & Yang, B. S. (2006). Condition monitoring of low speed bearings: A comparative study of the ultrasound technique versus vibration measurements. In Engineering asset management (pp. 182-191). Springer, London.
[16]Li, J., Wang, H., Wang, X., & Zhang, Y. (2020). Rolling bearing fault diagnosis based on improved adaptive parameterless empirical wavelet transform and sparse denoising. Measurement, 152, 107392.
[17]Osman, S., & Wang, W. (2016). A morphological Hilbert-Huang transform technique for bearing fault detection. IEEE Transactions on Instrumentation and Measurement, 65(11), 2646-2656.
[18]Quinde, I. R., Sumba, J. C., Ochoa, L. E., & Morales-Menendez, R. (2019). Bearing fault diagnosis based on optimal time-frequency representation method. IFAC-PapersOnLine, 52(11), 194-199.
[19]Liu, X., Bo, L., & Luo, H. (2015). Bearing faults diagnostics based on hybrid LS-SVM and EMD method. Measurement, 59, 145-166.
[20]Lv, Y., Yuan, R., & Song, G. (2016). Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing. Mechanical Systems and Signal Processing, 81, 219-234.
[21]Chen, Z., Mauricio, A., Li, W., & Gryllias, K. (2020). A deep learning method for bearing fault diagnosis based on cyclic spectral coherence and convolutional neural networks. Mechanical Systems and Signal Processing, 140, 106683.
[22]Dhamande, L. S., & Chaudhari, M. B. (2016). Bearing fault diagnosis based on statistical feature extraction in time and frequency domain and neural network. International Journal of Vehicle Structures & Systems, 8(4), 229.
[23]Saari, J., Strömbergsson, D., Lundberg, J., & Thomson, A. (2019). Detection and identification of windmill bearing faults using a one-class support vector machine (SVM). Measurement, 137, 287-301.
[24]Lopes, R., & Betrouni, N. (2009). Fractal and multifractal analysis: a review. Medical image analysis, 13(4), 634-649.
[25]Zhao, J., Chen, S., Zuo, R., & Carranza, E. J. M. (2011). Mapping complexity of spatial distribution of faults using fractal and multifractal models: vectoring towards exploration targets. Computers & Geosciences, 37(12), 1958-1966.
[26]Lin, J., & Chen, Q. (2013). Fault diagnosis of rolling bearings based on multifractal detrended fluctuation analysis and Mahalanobis distance criterion. Mechanical Systems and Signal Processing, 38(2), 515-533.
[27]Liu, H., Wang, X., & Lu, C. (2015). Rolling bearing fault diagnosis based on LCD–TEO and multifractal detrended fluctuation analysis. Mechanical Systems and Signal Processing, 60, 273-288.
[28]Shi, J., Liang, M., & Guan, Y. (2016). Bearing fault diagnosis under variable rotational speed via the joint application of windowed fractal dimension transform and generalized demodulation: A method free from prefiltering and resampling. Mechanical Systems and Signal Processing, 68, 15-33.
[29]Du, W., Tao, J., Li, Y., & Liu, C. (2014). Wavelet leaders multifractal features based fault diagnosis of rotating mechanism. Mechanical Systems and Signal Processing, 43(1-2), 57-75.
[30]Lu, S., Wang, J., & Xue, Y. (2016). Study on multi-fractal fault diagnosis based on EMD fusion in hydraulic engineering. Applied Thermal Engineering, 103, 798-806.
[31]Wang, B., Hu, X., & Li, H. (2017). Rolling bearing performance degradation condition recognition based on mathematical morphological fractal dimension and fuzzy C-means. Measurement, 109, 1-8.
[32]Zhang, Y., Xing, K., Bai, R., Sun, D., & Meng, Z. (2020). An enhanced convolutional neural network for bearing fault diagnosis based on time–frequency image. Measurement, 157, 107667.
[33]Sun, R. B., Yang, Z. B., Zhai, Z., & Chen, X. F. (2019). Sparse representation based on parametric impulsive dictionary design for bearing fault diagnosis. Mechanical Systems and Signal Processing, 122, 737-753.
[34]Nandi, S., Toliyat, H. A., & Li, X. (2005). Condition monitoring and fault diagnosis of electrical motors—A review. IEEE transactions on energy conversion, 20(4), 719-729.
[35]Cao, S., Xu, F., & Ma, T. (2021). Fault diagnosis of rolling bearing based on multiscale one-dimensional hybrid binary pattern. Measurement, 109552.
[36]Wang, Z., Yao, L., Chen, G., & Ding, J. (2021). Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals. ISA transactions.
[37]Antoni, J., & Borghesani, P. (2019). A statistical methodology for the design of condition indicators. Mechanical Systems and Signal Processing, 114, 290-327.
[38]Zhong, J., Wang, D., & Li, C. (2021). A nonparametric health index and its statistical threshold for machine condition monitoring. Measurement, 167, 108290.
[39]Deng, F., Qiang, Y., Liu, Y., Yang, S., & Hao, R. (2020). Adaptive parametric dictionary design of sparse representation based on fault impulse matching for rotating machinery weak fault detection. Measurement Science and Technology, 31(6), 065101.
[40]呂健合(2018)。軸承運轉狀態偵測系統。崑山科技大學電子工程研究所碩士論文,台南市。[41]Ewert, P., Kowalski, C. T., & Orlowska-Kowalska, T. (2020). Low-cost monitoring and diagnosis system for rolling bearing faults of the induction motor based on neural network approach. Electronics, 9(9), 1334.
[42]洪詩堯(2017)。智能化高速主軸即時異常監控暨熱誤差預測建模。國立中興大學機械工程學系所碩士論文,台中市。[43]Edgar, G. (2007). Measure, topology, and fractal geometry. Springer Science & Business Media.
[44]Mandelbrot, B. B., & Mandelbrot, B. B. (1982). The fractal geometry of nature (Vol. 1). New York: WH freeman.
[45]Barunik, J., Aste, T., Di Matteo, T., & Liu, R. (2012). Understanding the source of multifractality in financial markets. Physica A: Statistical Mechanics and its Applications, 391(17), 4234-4251.
[46]Yang, D., Zhang, C., & Liu, Y. (2015). Multifractal characteristic analysis of near-fault earthquake ground motions. Soil Dynamics and Earthquake Engineering, 72, 12-23.
[47]Baoliang, Y. Y. W. T. L., & Shixuan, Y. (2010). A New Signal Feature Extraction Method-Fractal dimensions of Time-Frequency Domain. International Journal of Computer Information Systems and Industrial Management Applications, Vol. 2, pp. 155-162.
[48]C. C. Lee and B. W. Tsai. (2005). The Relationship between the Spatial Pattern of Built-up Area and Landform-- An Application of Fractal Theory. Journal of Taiwan Geographic Information Science(3): pp.43-55.
[49]Zhang, S. Q., He, Y. Z., Zhang, J. M., & Zhao, Y. C. (2012). Multi-fractal based fault diagnosis method of rotating machinery. In Applied Mechanics and Materials (Vol. 130, pp. 571-574). Trans Tech Publications Ltd.
[50]Zheng, Z., Jiang, W., Wang, Z., Zhu, Y., & Yang, K. (2015). Gear fault diagnosis method based on local mean decomposition and generalized morphological fractal dimensions. Mechanism and Machine Theory, 91, 151-167.
[51]秦少凡(2015)。台灣股票市場多重碎形去趨勢波動分析。國立東華大學物理學系碩士論文,花蓮縣。[52]Liu, Z., Shang, P., & Wang, Y. (2019). Multifractal weighted permutation analysis based on Rényi entropy for financial time series. Physica A: Statistical Mechanics and its Applications, 536, 120994.
[53]湯耀期、李國豪(2019)。振動訊號在軸承損傷診斷之應用。台灣聲學學會 108 年會員大會暨第 32 屆學術研討會,國立臺灣科技大學。
[54]Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics (Vol. 1). New York: Wiley.
[55]Netcraft. (2021, May 31). May 2021 Web Server Survey.
https://news.netcraft.com/archives/2021/05/31/may-2021-web-server-survey.html
[56]林怡臻(2021)。重大疫情之功能面與情感面聊天機器人實作:以新型冠狀病毒為例。國立臺北科技大學資訊與財金管理系碩士論文,台北市。[57]Datareportal. (2021, Feb 11). Digital in Taiwan: All the Statistics You Need in 2021 — DataReportal – Global Digital Insights. https://datareportal.com/reports/digital-2021-taiwan
[58]J. Lee, H. Qiu, G. Yu, J. Lin, and Rexnord Technical Services (2007). IMS, University of Cincinnati. "Bearing Data Set", NASA Ames Prognostics Data Repository , NASA Ames Research Center, Moffett Field, CA
[59]Qiu, H., Lee, J., Lin, J., & Yu, G. (2006). Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. Journal of sound and vibration, 289(4-5), 1066-1090.
[60]PCB. (2021, Feb 15). Model 353B33 Installation and Operating Manual.
https://www.pcbpiezotronics.fr/wp-content/uploads/353B33.pdf
[61]Arslan, A. T., & Yayan, U. (2019, April). Convolutional Auto-Encoder Based Degradation Point Forecasting for Bearing Data Set. In The International Conference on Artificial Intelligence and Applied Mathematics in Engineering (pp. 817-829). Springer, Cham.
[62]Cavalaglio Camargo Molano, J., Strozzi, M., Rubini, R., & Cocconcelli, M. (2019). Analysis of NASA Bearing Dataset of the University of Cincinnati by Means of Hjorth’s Parameters. In International Conference on Structural Engineering Dynamics ICEDyn 2019.
[63]Ambika, P. S., Rajendrakumar, P. K., & Ramchand, R. (2019, February). An Approach to Rolling Bearing Fault Diagnosis using Fractal Descriptors and Regularized Least Squares. In 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP) (pp. 1-6). IEEE.
[64]Tang, Y., & Li, K. (2021). Quantitative diagnosis of mechanical faults based on generalized fractal dimensions. Measurement Science and Technology, 32(6), 065013.
[65]Mi, L., Tan, W., & Chen, R. (2013). Multi-steps degradation process prediction for bearing based on improved back propagation neural network. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 227(7), 1544-1553.
[66]Lu, W., Li, Y., Cheng, Y., Meng, D., Liang, B., & Zhou, P. (2018). Early fault detection approach with deep architectures. IEEE Transactions on Instrumentation and Measurement, 67(7), 1679-1689.
[67]Liu, C., & Gryllias, K. (2020). A semi-supervised Support Vector Data Description-based fault detection method for rolling element bearings based on cyclic spectral analysis. Mechanical Systems and Signal Processing, 140, 106682.
[68]Yu, J. (2012). Health condition monitoring of machines based on hidden Markov model and contribution analysis. IEEE Transactions on Instrumentation and Measurement, 61(8), 2200-2211.