|
1. Yagci, Y., S. Jockusch, and N.J. Turro, Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules, (2010), 43, 6245-6260. 2. Peterson, G.I., J.J. Schwartz, D. Zhang, B.M. Weiss, M.A. Ganter, D.W. Storti, and A.J. Boydston, Production of materials with spatially-controlled cross-link density via vat photopolymerization. ACS Applied Materials & Interfaces, (2016), 8, 29037-29043. 3. Aswathy, G., C.S. Rajesh, M.S. Sreejith, K.P. Vijayakumar, and C. Sudha Kartha, Designing photovoltaic concentrators using holographic lens recorded in nickel ion doped photopolymer material. Solar Energy, (2018), 163, 70-77. 4. Luo, K., S. Zhou, and L. Wu, High refractive index and good mechanical property UV-cured hybrid films containing zirconia nanoparticles. Thin Solid Films, (2009), 517, 5974-5980. 5. Sangermano, M., P. Palmero, and L. Montanaro, UV-Cured Polysiloxane Epoxy Coatings Containing Titanium Dioxide as Photosensitive Semiconductor. Macromolecular Materials and Engineering, (2009), 294, 323-329. 6. Wang, H.-J., Q.-Y. Mao, G. Feng, C. Liu, M.-Z. Yang, M.-F. Hao, Z.-F. Meng, S.-M. Li, Y.-P. Zhang, and J.-Y. Wang, 3D printing of multi-functional artificial conduits against acute thrombosis and clinical infection. Composites Part B: Engineering, (2022), 230, 109497. 7. Wiley, K.L., E.M. Ovadia, C.J. Calo, R.E. Huber, and A.M. Kloxin, Rate-based approach for controlling the mechanical properties of ‘thiol–ene’ hydrogels formed with visible light. Polymer Chemistry, (2019), 10, 4428-4440. 8. Zou, J., C.C. Hew, E. Themistou, Y. Li, C.-K. Chen, P. Alexandridis, and C. Cheng, Clicking Well-Defined Biodegradable Nanoparticles and Nanocapsules by UV-Induced Thiol-Ene Cross-Linking in Transparent Miniemulsions. Advanced Materials, (2011), 23, 4274-4277. 9. Rydholm, A.E., C.N. Bowman, and K.S. Anseth, Degradable thiol-acrylate photopolymers: polymerization and degradation behavior of an in situ forming biomaterial. Biomaterials, (2005), 26, 4495-4506. 10. Shih, H. and C.C. Lin, Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Biomacromolecules, (2012), 13, 2003-2012. 11. Lovelady, E., S.D. Kimmins, J. Wu, and N.R. Cameron, Preparation of emulsion-templated porous polymers using thiol–ene and thiol–yne chemistry. Polymer Chemistry, (2011), 2, 559-562. 12. Konkolewicz, D., C.K. Poon, A. Gray-Weale, and S. Perrier, Hyperbranched alternating block copolymers using thiol–yne chemistry: materials with tuneable properties. Chemical Communications, (2011), 47, 239-241. 13. Juzenas, P., A. Juzeniene, O. Kaalhus, V. Iani, and J. Moan, Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo. Polymer Chemistry , (2002), 1, 745-748. 14. Stepuk, A., D. Mohn, R.N. Grass, M. Zehnder, K.W. Krämer, F. Pellé, A. Ferrier, and W.J. Stark, Use of NIR light and upconversion phosphors in light-curable polymers. Sciencedirect, (2012), 28, 304-311. 15. Zivic, N., J. Zhang, D. Bardelang, F. Dumur, P. Xiao, T. Jet, D.-L. Versace, C. Dietlin, F. Morlet-Savary, B. Graff, J.P. Fouassier, D. Gigmes, and J. Lalevée, Novel naphthalimide–amine based photoinitiators operating under violet and blue LEDs and usable for various polymerization reactions and synthesis of hydrogels. Polymer Chemistry, (2016), 7, 418-429. 16. Dreyer, C. and F. Mildner, Application of LEDs for UV-Curing, in III-Nitride Ultraviolet Emitters: Technology and Applications, M. Kneissl and J. Rass, Editors. 2016, Springer International Publishing: Cham. 415-434. 17. Schmitz, C., T. Poplata, A. Feilen, and B. Strehmel, Radiation crosslinking of pigmented coating material by UV LEDs enabling depth curing and preventing oxygen inhibition. Progress in Organic Coatings, (2020), 144, 105663. 18. Simon, J. and A. Langenscheidt, Curing behavior of a UV-curable inkjet ink: Distinction between surface-cure and deep-cure performance. Journal of Applied Polymer Science, (2020), 137, 49218. 19. Dumur, F., Recent advances on visible light photoinitiators of polymerization based on Indane-1,3-dione and related derivatives. European Polymer Journal, (2021), 143, 110178. 20. Fouassier, J.-P. and J. Lalevée, Photoinitiators for polymer synthesis: scope, reactivity, and efficiency. 2012: John Wiley & Sons. 21. Zhang, J., M. Frigoli, F.d.r. Dumur, P. Xiao, L. Ronchi, B. Graff, F. MorletSavary, J.P. Fouassier, D. Gigmes, and J. Lalevée, Design of Novel Photoinitiators for Radical and Cationic Photopolymerizations under Near UV and Visible LEDs (385, 395, and 405 nm). Macromolecules, (2014), 47, 2811- 2819. 22. Muramoto, Y., M. Kimura, and S. Nouda, Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semiconductor Science and Technology, (2014), 29, 084004. 23. Morita, D., M. Sano, M. Yamamoto, T. Murayama, S.-i. Nagahama, and T. Mukai, High output power 365 nm ultraviolet light emitting diode of GaN-free structure. JapaneseJournal of Applied Physics, (2002), 41, L1434. 24. Balcerak, A., J. Kabatc-Borcz, Z. Czech, and M. Bartkowiak, Latest Advances in Highly Efficient Dye-Based Photoinitiating Systems for Radical Polymerization. Polymers, (2023), 15, 1148. 25. Alger, M., Polymer science dictionary. 1996: Springer Science & Business Media. 26. 周洺委, 陽離子型紫外光硬化樹酯之研究. 2007, 國立台北科技大學有機 高分子所 27. 黃錫裕, UV Curable PU 樹酯之光硬化. 2004, 國立台北科技大學有機高分 子所. 28. 何志松、王維廷, 探討聚酯壓克力樹脂配方對性質之影響. 2017, 大葉大學: 科學與工程技術期刊. 33-43. 29. Odian, G., Principles of polymerization. 2004: John Wiley & Sons. 30. 王心麟, 鏈轉移劑與活性稀釋劑對 UV光固化塗料物性之研究. 2017, 國立 台北科技大學化學工程與材料工程所. 31. 楊修銘, 以丙烯酸酯製備陽離子型紫外光硬化塗料之研究. 2016, 國立高 雄應用科技大學化學工程與材料工程系所. 32. Sameshima, K., T. Kawakami, H. Sotome, M. Fuki, Y. Kobori, and H. Miyasaka, Dynamics and mechanism of radical formation in a highly sensitive oxime photoinitiator as revealed by time-resolved absorption and EPR measurements. Journal of Photochemistry and Photobiology A: Chemistry, (2023), 437, 114479. 33. Studer, K., C. Decker, E. Beck, and R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Progress in Organic Coatings, (2003), 48, 92-100. 34. Studer, K., C. Decker, E. Beck, and R. Schwalm, Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting: Part II. Progress in Organic Coatings, (2003), 48, 101-111. 35. Kecici, Z., S. Babaoglu, and G. Temel, Methacrylated benzophone as triple functional compound for the synthesis of partially crosslinked copolymers. Progress in Organic Coatings, (2018), 115, 138-142. 36. Aydin, M., G. Temel, D.K. Balta, and N. Arsu, “Mono” and “bifunctional” aromatic esterificated benzophenone photoinitiators for free radical polymerization. Polymer Bulletin, (2015), 72, 309-322. 37. Fouassier, J.P. and J. Lalevée, Three-component photoinitiating systems: towards innovative tailor made high performance combinations. RSC Advances, (2012), 2, 2621-2629. 38. Andrzejewska, E., D. Zych-Tomkowiak, M. Andrzejewski, G.L. Hug, and B. Marciniak, Heteroaromatic thiols as co-initiators for type II photoinitiating systems based on camphorquinone and isopropylthioxanthone. Macromolecules, (2006), 39, 3777-3785. 39. Davidson, R.S., The chemistry of photoinitiators—some recent developments. Journal of Photochemistry and Photobiology A: Chemistry, (1993), 73, 81-96. 40. Ma, X., D. Cao, H. Fu, J. You, R. Gu, B. Fan, J. Nie, and T. Wang, Multicomponent photoinitiating systems containing arylamino oxime ester for visible light photopolymerization. Progress in Organic Coatings, (2019), 135, 517-524. 41. Wang, W., M. Jin, H. Pan, and D. Wan, Phenylthioether thiophene-based oxime esters as novel photoinitiators for free radical photopolymerization under LED irradiation wavelength exposure. Progress in Organic Coatings, (2021), 151, 106019. 42. Scaiano, J.C. and L.C. Stewart, Phenyl radical kinetics. Journal of the American Chemical Society, (1983), 105, 3609-3614. 43. Zytowski, T. and H. Fischer, Absolute Rate Constants for the Addition of Methyl Radicals to Alkenes in Solution: New Evidence for Polar Interactions. Journal of the American Chemical Society, (1996), 118, 437-439. 44. Hammoud, F., N. Giacoletto, G. Noirbent, B. Graff, A. Hijazi, M. Nechab, D. Gigmes, F. Dumur, and J. Lalevée, Substituent effects on the photoinitiation ability of coumarin-based oxime-ester photoinitiators for free radical photopolymerization. Materials Chemistry Frontiers, (2021), 5, 8361-8370. 45. Chen, S., M. Jin, J.-P. Malval, J. Fu, F. Morlet-Savary, H. Pan, and D. Wan, Substituted stilbene-based oxime esters used as highly reactive wavelengthdependent photoinitiators for LED photopolymerization. Polymer Chemistry, (2019), 10, 6609-6621. 46. Zhou, R., H. Pan, D. Wan, J.-P. Malval, and M. Jin, Bicarbazole-based oxime esters as novel efficient photoinitiators for photopolymerization under UV-Vis LEDs. Progress in Organic Coatings, (2021), 157, 106306. 47. Hammoud, F., A. Hijazi, M. Schmitt, F. Dumur, and J. Lalevée, A review on recently proposed oxime ester photoinitiators. European Polymer Journal, (2023), 188, 111901. 48. Makino, M., K. Uenishi, and T. Tsuchimura, Synthesis and Properties of Highly Sensitive Ether Ring Fused O-Acyloxime Esters as Photoradical Initiator. Journal of Photopolymer Science and Technology, (2018), 31, 37-44. 49. Lu, H. and Z. Li, Synthesis and Structure-Activity Relationship of N- Substituted Carbazole Oxime Ester Photoinitiators. Journal of Photopolymer Science and Technology, (2021), 34, 307-313. 50. Ma, X., R. Gu, L. Yu, W. Han, J. Li, X. Li, and T. Wang, Conjugated phenothiazine oxime esters as free radical photoinitiators. Polymer Chemistry, (2017), 8, 6134-6142. 51. Liu, S., N. Giacoletto, B. Graff, F. Morlet-Savary, M. Nechab, P. Xiao, F. Dumur, and J. Lalevée, N-naphthalimide ester derivatives as Type Ⅰ photoinitiators for LED photopolymerization. Materials Today Chemistry, (2022), 26, 101137. 52. Rahal, M., H. Bidotti, S. Duval, B. Graff, T. Hamieh, J. Toufaily, F. Dumur, and J. Lalevée, Investigation of pyrene vs Anthracene-based oxime esters: Role of the excited states on their polymerization initiating abilities. European Polymer Journal, (2022), 177, 111452. 53. Ohwa, M., H. Kura, H. Oka, and H. Yamato, Development of Photoinitiators in Electronic Applications. Journal of Photopolymer Science and Technology, (2002), 15, 51-57. 54. Liou, G.-S., N.-K. Huang, and Y.-L. Yang, New soluble triphenylamine-based amorphous aromatic polyamides for high performance blue-emitting holetransporting and anodically electrochromic materials. Polymer, (2006), 47, 7013-7020. 55. Chang, C.-W. and G.-S. Liou, Stably anodic green electrochromic aromatic poly (amine–amide–imide)s: Synthesis and electrochromic properties. Organic Electronics, (2007), 8, 662-672. 56. Cravino, A., S. Roquet, P. Leriche, O. Alévêque, P. Frère, and J. Roncali, A starshaped triphenylamine π-conjugated system with internal charge-transfer as donor material for hetero-junction solar cells. Chemical Communications, (2006), 1416-1418. 57. Song, Y., C.-a. Di, W. Xu, Y. Liu, D. Zhang, and D. Zhu, New semiconductors based on triphenylamine with macrocyclic architecture: synthesis, properties and applications in OFETs. Journal of Materials Chemistry, (2007), 17, 4483- 4491. 58. Wang, B., Y. Wang, J. Hua, Y. Jiang, J. Huang, S. Qian, and H. Tian, Starburst Triarylamine Donor–Acceptor–Donor Quadrupolar Derivatives Based on Cyano-Substituted Diphenylaminestyrylbenzene: Tunable Aggregation-Induced Emission Colors and Large Two-Photon Absorption Cross Sections. Chemistry – A European Journal, (2011), 17, 2647-2655. 59. Stafford, A., D. Ahn, E.K. Raulerson, K.-Y. Chung, K. Sun, D.M. Cadena, E.M. Forrister, S.R. Yost, S.T. Roberts, and Z.A. Page, Catalyst Halogenation Enables Rapid and Efficient Polymerizations with Visible to Far-Red Light. Journal of the American Chemical Society, (2020), 142, 14733-14742. 60. Cao, X., F. Jin, Y.-F. Li, W.-Q. Chen, X.-M. Duan, and L.-M. Yang, Triphenylamine-modified quinoxaline derivatives as two-photon photoinitiators. New Journal of Chemistry, (2009), 33, 1578-1582. 61. Dumur, F., Recent advances on visible light Triphenylamine-based photoinitiators of polymerization. European Polymer Journal, (2022), 166, 111036. 62. Al Mousawi, A., P. Garra, X. Sallenave, F. Dumur, J. Toufaily, T. Hamieh, B. Graff, D. Gigmes, J.P. Fouassier, and J. Lalevée, π-Conjugated Dithienophosphole Derivatives as High Performance Photoinitiators for 3D Printing Resins. Macromolecules, (2018), 51, 1811-1821. 63. Li, Y.-H. and Y.-C. Chen, Triphenylamine-hexaarylbiimidazole derivatives as hydrogen-acceptor photoinitiators for free radical photopolymerization under UV and LED light. Polymer Chemistry, (2020), 11, 1504-1513. 64. Ren, W., H. Zhuang, Q. Bao, S. Miao, H. Li, J. Lu, and L. Wang, Enhancing the coplanarity of the donor moiety in a donor-acceptor molecule to improve the efficiency of switching phenomenon for flash memory devices. Dyes and Pigments, (2014), 100, 127-134. 65. Suresh, S., H. Zengin, B.K. Spraul, T. Sassa, T. Wada, and D.W. Smith, Synthesis and hyperpolarizabilities of high temperature triarylamine-polyene chromophores. Tetrahedron Letters, (2005), 46, 3913-3916. 66. Moretti, E., M. Aversa, A. Scrivanti, L. Storaro, A. Talon, R. Marin, J.A. Cecilia, E. Rodríguez-Castellón, and S. Polizzi, A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties. Chemical Papers, (2016), 70, 218-230. 67. Thesen, M.W., B. Höfer, M. Debeaux, S. Janietz, A. Wedel, A. Köhler, H.-H. Johannes, and H. Krueger, Hole-transporting host-polymer series consisting of triphenylamine basic structures for phosphorescent polymer light-emitting diodes. Journal of Polymer Science Part A: Polymer Chemistry, (2010), 48, 3417-3430. 68. Li, Z., X. Zou, G. Zhu, X. Liu, and R. Liu, Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and ThiolBased Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation. ACS Applied Materials & Interfaces, (2018), 10, 16113-16123. 69. Luo, W., Y. Zhang, Y. Gong, Q. Zhou, Y. Zhang, and W. Yuan, Crystallizationinduced phosphorescence, remarkable mechanochromism, and grind enhanced emission of benzophenone-aromatic amine conjugates. Chinese Chemical Letters, (2018), 29, 1533-1536. 70. Lalevée, J., N. Blanchard, M.-A. Tehfe, M. Peter, F. Morlet-Savary, D. Gigmes, and J.P. Fouassier, Efficient dual radical/cationic photoinitiator under visible light: a new concept. Polymer Chemistry, (2011), 2, 1986-1991. 71. Liu, S., Y. Zhang, K. Sun, B. Graff, P. Xiao, F. Dumur, and J. Lalevée, Design of photoinitiating systems based on the chalcone-anthracene scaffold for LED cationic photopolymerization and application in 3D printing. European Polymer Journal, (2021), 147, 110300. 72. Lalevée, J., X. Allonas, and J.P. Fouassier, Acrylate radicals: Direct observation and reactivity. Chemical Physics Letters, (2005), 415, 287-290. 73. Mo, Y., The Resonance Energy of Benzene: A Revisit. The Journal of Physical Chemistry A, (2009), 113, 5163-5169. 74. Silva López, C. and O. Nieto Faza, 2 - Overview of the computational methods to assess aromaticity, in Aromaticity, I. Fernandez, Editor. 2021, Elsevier. 41- 71. 75. Slodek, A., D. Zych, S. Kotowicz, G. Szafraniec-Gorol, S. Zimosz, E. SchabBalcerzak, M. Siwy, J. Grzelak, and S. Maćkowski, “Small in size but mighty in force” – The first principle study of the impact of A/D units in A/D-phenyl-πphenothiazine-π-dicyanovinyl systems on photophysical and optoelectronic properties. Dyes and Pigments, (2021), 189, 109248. 76. M. Godfrey, S., C. A. McAuliffe, I. Mushtaq, R. G. Pritchard, and J. M. Sheffield, The structure of R3PBr2 compounds in the solid state and in solution; geometrical dependence on R, the crystal structures of tetrahedral ionic Et3PBr2 and molecular trigonal bipyramidal (C6F5)3PBr2. Journal of the Chemical Society, Dalton Transactions, (1998), 3815-3818. 77. Chermahini, Z.J., A.N. Chermahini, H.A. Dabbagh, and A. Teimouri, New tetrazole-based organic dyes for dye-sensitized solar cells. Journal of Energy Chemistry, (2015), 24, 770-778. 78. Zhang, M.-X., X. Yang, F. Tan, X. Ou, G. Zeng, D. Chen, Z. Xu, and S.H. Liu, Design, synthesis and properties of twisted D-A-D’ arylamine derivatives with solvatochromism. Dyes and Pigments, (2022), 204, 110420. 79. Lu, X., Y. Zhan, and W. He, Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. Journal of Photochemistry and Photobiology B: Biology, (2022), 234, 112528. 80. Feng, R.S., S.B. Tang, J.H. Sun, D. Pu, Y. Fan, X. Jiang, and Y.J. Guo, Polymerization Process Regulation Based on Photoinitiator Decomposition Kinetics. Acta Polymerica Sinica, (2016), 8, 1091-1097. 81. Tu, J., Y. Fan, J. Wang, X. Li, F. Liu, M. Han, C. Wang, Q. Li, and Z. Li, Halogen-substituted triphenylamine derivatives with intense mechanoluminescence properties. Journal of Materials Chemistry C, (2019), 7, 12256-12262. 82. Hu, W., R. Zhang, X.-F. Zhang, J. Liu, and L. Luo, Halogenated BODIPY photosensitizers: Photophysical processes for generation of excited triplet state, excited singlet state and singlet oxygen. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (2022), 272, 120965. 83. Goswami, P.P., A. Syed, C.L. Beck, T.R. Albright, K.M. Mahoney, R. Unash, E.A. Smith, and A.H. Winter, BODIPY-Derived Photoremovable Protecting Groups Unmasked with Green Light. Journal of the American Chemical Society, (2015), 137, 3783-3786. 84. Mońka, M., I.E. Serdiuk, K. Kozakiewicz, E. Hoffman, J. Szumilas, A. Kubicki, S.Y. Park, and P. Bojarski, Understanding the internal heavy-atom effect on thermally activated delayed fluorescence: application of Arrhenius and Marcus theories for spin–orbit coupling analysis. Journal of Materials Chemistry C, (2022), 10, 7925-7934. 85. Yoon, J., Y.J. Jung, J.B. Yoon, K. Damodar, H. Kim, M. Shin, M. Seo, D.W. Cho, J.T. Lee, and J.K. Lee, The heavy-atom effect on xanthene dyes for photopolymerization by visible light. Polymer Chemistry, (2019), 10, 5737- 5742. 86. Lee, W.J., H.S. Kwak, D.-r. Lee, C. Oh, E.K. Yum, Y. An, M.D. Halls, and C.- W. Lee, Design and Synthesis of Novel Oxime Ester Photoinitiators Augmented by Automated Machine Learning. Chemistry of Materials, (2022), 34, 116-127. 87. Lalevée, J., N. Blanchard, M. El-Roz, B. Graff, X. Allonas, and J.P. Fouassier, New Photoinitiators Based on the Silyl Radical Chemistry: Polymerization Ability, ESR Spin Trapping, and Laser Flash Photolysis Investigation. Macromolecules, (2008), 41, 4180-4186. 88. Li, Z., X. Zou, G. Zhu, X. Liu, and R. Liu, Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and ThiolBased Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation. ACS Applied Materials & Interfaces, (2018), 10, 16113-16123. 89. Elgadi, S.A., D.M. Mayder, R. Hojo, and Z.M. Hudson, Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence in Sulfidoazatriangulene-Based Materials and their S-oxides. Advanced Optical Materials, (2023), 11, 2202754. 90. Zhang, M.-X., X. Yang, F. Tan, H. Zhang, G. Zeng, Z. Xu, and S.H. Liu, Synthesis, structure and mechanofluorochromic properties of phenothiazine-S- oxide and phenothiazine-S,S-dioxide derivatives. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (2023), 292, 122427. 91. Buene, A.F. and D.M. Almenningen, Phenothiazine and phenoxazine sensitizers for dye-sensitized solar cells – an investigative review of two complete dye classes. Journal of Materials Chemistry C, (2021), 9, 11974-11994. 92. Thokala, S. and S.P. Singh, Phenothiazine-Based Hole Transport Materials for Perovskite Solar Cells. ACS Omega, (2020), 5, 5608-5619. 93. Armon, A.M., A. Bedi, V. Borin, I. Schapiro, and O. Gidron, Bending versus Twisting Acenes - A Computational Study. European Journal of Organic Chemistry, (2021), 2021, 5424-5429. 94. Sabatini, R.P., B. Lindley, T.M. McCormick, T. Lazarides, W.W. Brennessel, D.W. McCamant, and R. Eisenberg, Efficient Bimolecular Mechanism of Photochemical Hydrogen Production Using Halogenated BoronDipyrromethene (Bodipy) Dyes and a Bis(dimethylglyoxime) Cobalt(III) Complex. The Journal of Physical Chemistry B, (2016), 120, 527-534. 95. Zivic, N., M. Bouzrati-Zerrelli, S. Villotte, F. Morlet-Savary, C. Dietlin, F. Dumur, D. Gigmes, J.P. Fouassier, and J. Lalevée, A novel naphthalimide scaffold based iodonium salt as a one-component photoacid/photoinitiator for cationic and radical polymerization under LED exposure. Polymer Chemistry, (2016), 7, 5873-5879. 96. Dietlin, C., X. Allonas, F. Morlet‐Savary, J.-P. Fouassier, M. Visconti, G. Norcini, and S. Romagnano, Investigation of Barton esters as radical photoinitiators. Journal of Applied Polymer Science, (2008), 109, 825-833. 97. Esen, D.S., F. Karasu, and N. Arsu, The investigation of photoinitiated polymerization of multifunctional acrylates with TX-BT by Photo-DSC and RTFTIR. Progress in Organic Coatings, (2011), 70, 102-107. 98. Eren, T.N., T. Gencoglu, M. Abdallah, J. Lalevée, and D. Avci, A water soluble and highly reactive bisphosphonate functionalized thioxanthone-based photoinitiator. European Polymer Journal, (2020), 135, 109906. 99. Shi, Y., J. Yin, M. Kaji, and H. Yori, Synthesis of a novel hexaarylbiimidazole with ether groups and characterization of its photoinitiation properties for acrylate derivatives. Polymer Engineering & Science, (2006), 46, 474-479. 100. Andrzejewska, E. and M. Andrzejewski, Polymerization kinetics of photocurable acrylic resins. Journal of Polymer Science Part A: Polymer Chemistry, (1998), 36, 665-673. 101. Fast, D.E., A. Lauer, J.P. Menzel, A.-M. Kelterer, G. Gescheidt, and C. BarnerKowollik, Wavelength-Dependent Photochemistry of Oxime Ester Photoinitiators. Macromolecules, (2017), 50, 1815-1823. 102. Lebedevaite, M. and J. Ostrauskaite, Influence of photoinitiator and temperature on photocross-linking kinetics of acrylated epoxidized soybean oil and properties of the resulting polymers. Industrial Crops and Products, (2021), 161, 113210. 103. Xie, C., Z. Wang, Y. Liu, L. Song, L. Liu, Z. Wang, and Q. Yu, A novel acyl phosphine compound as difunctional photoinitiator for free radical polymerization. Progress in Organic Coatings, (2019), 135, 34-40. 104. Lee, Z.-H., T.-L. Huang, F. Hammoud, C.-C. Chen, A. Hijazi, B. Graff, J. Lalevée, and Y.-C. Chen, Effect of the Steric Hindrance and Branched Substituents on Visible Phenylamine Oxime Ester Photoinitiators: Photopolymerization Kinetics Investigation through Photo-DSC Experiments. Photochemistry and Photobiology, (2022), 98, 773-782.
|