|
1.世界肥胖聯盟. 世界肥胖日. 2023; Available from: https://www.worldobesityday.org. 2.Kasper, P., et al., NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol, 2021. 110(7): p. 921-937. 3.衛生福利部. 112年國人死因統計結果. 2024; Available from: https://www.mohw.gov.tw/cp-16-79055-1.html. 4.Saklayen, M.G., The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep, 2018. 20(2): p. 12. 5.衛生福利部國民健康署, 代謝症候群. 2024. 6.Engin, A., The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv Exp Med Biol, 2017. 960: p. 1-17. 7.Trefts, E., M. Gannon, and D.H. Wasserman, The liver. Curr Biol, 2017. 27(21): p. R1147-r1151. 8.Zhang, P., et al., Similarities and Differences: A Comparative Review of the Molecular Mechanisms and Effectors of NAFLD and AFLD. Front Physiol, 2021. 12: p. 710285. 9.Younossi, Z., et al., Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology, 2019. 69(6): p. 2672-2682. 10.Fernando, D.H., et al., Development and Progression of Non-Alcoholic Fatty Liver Disease: The Role of Advanced Glycation End Products. Int J Mol Sci, 2019. 20(20). 11.Fang, C., et al., The AMPK pathway in fatty liver disease. Front Physiol, 2022. 13: p. 970292. 12.Sánchez-García, F.J., et al., The Role of Tricarboxylic Acid Cycle Metabolites in Viral Infections. Front Cell Infect Microbiol, 2021. 11: p. 725043. 13.Kohjima, M., et al., SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med, 2008. 21(4): p. 507-11. 14.Hofer, P., et al., The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites, 2020. 10(4). 15.Wang, M., et al., Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy? Front Pharmacol, 2021. 12: p. 760581. 16.Clifford, B.L., et al., FXR activation protects against NAFLD via bile-acid-dependent reductions in lipid absorption. Cell Metab, 2021. 33(8): p. 1671-1684.e4. 17.Chiang, J.Y.L. and J.M. Ferrell, Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. Am J Physiol Gastrointest Liver Physiol, 2020. 318(3): p. G554-g573. 18.Cheng, L., et al., Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte, 2021. 10(1): p. 48-65. 19.Hachemi, I. and U.D. M, Brown Adipose Tissue: Activation and Metabolism in Humans. Endocrinol Metab (Seoul), 2023. 38(2): p. 214-222. 20.Zhang, P., et al., Factors Associated with White Fat Browning: New Regulators of Lipid Metabolism. Int J Mol Sci, 2022. 23(14). 21.Li, X., et al., Adipose tissue macrophages as potential targets for obesity and metabolic diseases. Front Immunol, 2023. 14: p. 1153915. 22.Mills, C.D., et al., M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol, 2000. 164(12): p. 6166-73. 23.Mily, A., et al., Polarization of M1 and M2 Human Monocyte-Derived Cells and Analysis with Flow Cytometry upon Mycobacterium tuberculosis Infection. J Vis Exp, 2020(163). 24.Chae, Y.R., et al., Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol, 2024. 34(4): p. 747-756. 25.Aleman, R.S., M. Moncada, and K.J. Aryana, Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules, 2023. 28(2). 26.Brunner, J., S. Ragupathy, and G. Borchard, Target specific tight junction modulators. Adv Drug Deliv Rev, 2021. 171: p. 266-288. 27.Stojanov, S., A. Berlec, and B. Štrukelj, The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 2020. 8(11). 28.Frontera, W.R. and J. Ochala, Skeletal muscle: a brief review of structure and function. Calcif Tissue Int, 2015. 96(3): p. 183-95. 29.Akhmedov, D. and R. Berdeaux, The effects of obesity on skeletal muscle regeneration. Front Physiol, 2013. 4: p. 371. 30.Altajar, S. and G. Baffy, Skeletal Muscle Dysfunction in the Development and Progression of Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol, 2020. 8(4): p. 414-423. 31.Byun, K.A., et al., Dieckol-Attenuated High-Fat Diet Induced Muscle Atrophy by Modulating Muscular Deposition of Lipid Droplets. Nutrients, 2021. 13(9). 32.Richter, E.A. and M. Hargreaves, Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev, 2013. 93(3): p. 993-1017. 33.Yusuke, N., et al., Ubiquitin E3 ligases Atrogin-1 and MuRF1 protein contents are differentially regulated in the rapamycin-sensitive mTOR-S6K1 signaling pathway in C2C12 myotubes. bioRxiv, 2021: p. 2021.10.15.463676. 34.Jack, V.S., Effect of acute low oxygen exposure on the proliferation rate, viability and gene expression of C2C12 myoblasts in vitro. bioRxiv, 2020: p. 2020.07.09.162123. 35.Kumar, M., et al., Guava (Psidium guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods, 2021. 10(4). 36.Prabu, G.R., A. Gnanamani, and S. Sadulla, Guaijaverin -- a plant flavonoid as potential antiplaque agent against Streptococcus mutans. J Appl Microbiol, 2006. 101(2): p. 487-95. 37.Verdam, F.J., et al., Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity (Silver Spring), 2013. 21(12): p. E607-15. 38.Wong, M.L., et al., Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry, 2016. 21(6): p. 797-805. 39.Ley, R.E., et al., Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, 2005. 102(31): p. 11070-5. 40.Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-31. 41.van der Heijden, R.A., et al., High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice. Aging (Albany NY), 2015. 7(4): p. 256-68. 42.Cutolo, M., et al., The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front Immunol, 2022. 13: p. 867260. 43.Cheng, L., et al., Emodin Improves Glucose and Lipid Metabolism Disorders in Obese Mice via Activating Brown Adipose Tissue and Inducing Browning of White Adipose Tissue. Front Endocrinol (Lausanne), 2021. 12: p. 618037. 44.Argentato, P.P., et al., Programming mediated by fatty acids affects uncoupling protein 1 (UCP-1) in brown adipose tissue. Br J Nutr, 2018. 120(6): p. 619-627. 45.Geng, L., et al., Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose Tissues. Cell Rep, 2019. 26(10): p. 2738-2752.e4. 46.Bodine, S.C., et al., Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol, 2001. 3(11): p. 1014-9. 47.Horiike, M., Y. Ogawa, and S. Kawada, Effects of hyperoxia and hypoxia on the proliferation of C2C12 myoblasts. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2021. 321. 48.Xu, M., et al., FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget, 2017. 8(6): p. 10662-10674. 49.Bodine, S.C. and L.M. Baehr, Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab, 2014. 307(6): p. E469-84. 50.Sasaki, T., et al., The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J Biol Chem, 2018. 293(26): p. 10322-10332. 51.Lauritzen, H.P. and J.D. Schertzer, Measuring GLUT4 translocation in mature muscle fibers. Am J Physiol Endocrinol Metab, 2010. 299(2): p. E169-79. 52.Kociszewska, D., et al., The Link between Gut Dysbiosis Caused by a High-Fat Diet and Hearing Loss. Int J Mol Sci, 2021. 22(24). 53.Organization, W.H., Obesity and overweight. 2024. 54.Corrêa, T.A. and M.M. Rogero, Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition, 2019. 59: p. 150-157. 55.Ramaiah, P., et al., Dietary polyphenols and the risk of metabolic syndrome: a systematic review and meta-analysis. BMC Endocr Disord, 2024. 24(1): p. 26. 56.Zheng, Y., S.H. Ley, and F.B. Hu, Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018. 14(2): p. 88-98. 57.Chatterjee, S., K. Khunti, and M.J. Davies, Type 2 diabetes. Lancet, 2017. 389(10085): p. 2239-2251. 58.Rohm, T.V., et al., Inflammation in obesity, diabetes, and related disorders. Immunity, 2022. 55(1): p. 31-55. 59.Matveyenko, A.V. and P.C. Butler, Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab, 2008. 10 Suppl 4(0 4): p. 23-31. 60.Alam, F., et al., Metabolic Control of Type 2 Diabetes by Targeting the GLUT4 Glucose Transporter: Intervention Approaches. Curr Pharm Des, 2016. 22(20): p. 3034-49. 61.Aldahish, A., et al., Elucidating the Potential Inhibitor against Type 2 Diabetes Mellitus Associated Gene of GLUT4. J Pers Med, 2023. 13(4). 62.Thorens, B., GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 2015. 58(2): p. 221-32. 63.Iwai, S., et al., Branched Chain Amino Acids Promote ATP Production Via Translocation of Glucose Transporters. Invest Ophthalmol Vis Sci, 2022. 63(9): p. 7. 64.Lombardo, M., et al., Sarcopenic obesity: etiology and lifestyle therapy. Eur Rev Med Pharmacol Sci, 2019. 23(16): p. 7152-7162. 65.Merz, K.E. and D.C. Thurmond, Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr Physiol, 2020. 10(3): p. 785-809. 66.Tu, H. and Y.L. Li, Inflammation balance in skeletal muscle damage and repair. Front Immunol, 2023. 14: p. 1133355. 67.Xie, Y., et al., Impact of a high‑fat diet on intestinal stem cells and epithelial barrier function in middle‑aged female mice. Mol Med Rep, 2020. 21(3): p. 1133-1144. 68.Quesada-Vázquez, S., et al., Microbiota Dysbiosis and Gut Barrier Dysfunction Associated with Non-Alcoholic Fatty Liver Disease Are Modulated by a Specific Metabolic Cofactors' Combination. Int J Mol Sci, 2022. 23(22). 69.Magne, F., et al., The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 2020. 12(5).
|