|
[1] A. Zarringhalam Moghaddam, A. Rafiei, T. Khalili, Assessing prediction models on calculating the flash point of organic acid, ketone and alcohol mixtures, Fluid Phase Equilibria, 316 (2012) 117-121. [2] D.A. Crowl, J.F. Louvar, Chemical Process Safety: Fundamentals with Applications, 4th ed., Pearson Education, 2019. [3] H.-J. Liaw, C.-A. Yang, Maximum flash point behavior of ternary mixtures with single and two maximum flash point binary constituents, Process Safety and Environmental Protection, 143 (2020) 293-303. [4] A. Di Benedetto, R. Sanchirico, V. Di Sarli, Effect of pressure on the flash point of various fuels and their binary mixtures, Process Safety and Environmental Protection, 116 (2018) 615-620. [5] S. Balasubramonian, R.K. Srivastav, S. Kumar, D. Sivakumar, M. Sampath, U.K. Mudali, R. Natarajan, Flash point prediction for the binary mixture of phosphatic solvents and n-dodecane from UNIFAC group contribution model, Journal of Loss Prevention in the Process Industries, 33 (2015) 183-187. [6] X. Huo, Q. Lu, X. Sun, X. Shen, Study on flash-point measurement and reduced prediction model for ternary extraction system, Process Safety and Environmental Protection, 138 (2020) 99-107. [7] M. Bagheri, M. Bagheri, F. Heidari, A. Fazeli, Nonlinear molecular based modeling of the flash point for application in inherently safer design, Journal of Loss Prevention in the Process Industries, 25 (2012) 40-51. [8] E. Torabian, M.A. Sobati, New models for predicting the flash point of mixtures containing different alcohols, Process Safety and Environmental Protection, 111 (2017) 439-448. [9] H.-J. Liaw, Y.-Y. Chiu, A general model for predicting the flash point of miscible mixtures, Journal of hazardous materials, 137 (2006) 38-46. [10] N. Zhang, S.L. Shen, A.N. Zhou, J. Chen, A brief report on the March 21, 2019 explosions at a chemical factory in Xiangshui, China, Process Safety Progress, 38 (2019) e12060. [11] B.R. Kumar, S. Saravanan, Use of higher alcohol biofuels in diesel engines: A review, Renewable Sustainable Energy Reviews, 60 (2016) 84-115. [12] S.M.S. Ardebili, H. Solmaz, D. İpci, A. Calam, M. Mostafaei, A review on higher alcohol of fusel oil as a renewable fuel for internal combustion engines: Applications, challenges, and global potential, Fuel, 279 (2020) 118516. [13] H.-J. Liaw, Deficiencies frequently encountered in the management of process safety information, Process Safety and Environmental Protection, 132 (2019) 226-230. [14] H.J. Liaw, The maximum flammable content for binary aqueous–organic mixtures not to flash and their maximum flash points, AIChE Journal, 64 (2018) 263-271. [15] H.-J. Liaw, T.-P. Tsai, Flash points of partially miscible aqueous–organic mixtures predicted by UNIFAC group contribution methods, Fluid Phase Equilibria, 345 (2013) 45-59. [16] Y. Wada, Explosion due to sparks of an electric grinder during repairing a wastewater treatment vessel with neutralization. http://www.shippai.org/fkd/en/cfen/CC1200119.html, Accessed on June 13, 2022., (2022). [17] A.A. Merrouni, H.A.L. Ouali, M.A. Moussaoui, A. Mezrhab, Analysis and comparaison of different Heat Transfer Fluids for a 1MWe Parabolic Trough Collector, in: 2016 International Conference on Electrical and Information Technologies (ICEIT), IEEE, 2016, pp. 510-515. [18] K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Heat transfer fluids for concentrating solar power systems–a review, Applied Energy, 146 (2015) 383-396. [19] C.-J. Li, P. Li, K. Wang, E.E. Molina, Survey of properties of key single and mixture halide salts for potential application as high temperature heat transfer fluids for concentrated solar thermal power systems, AIMS Energy, 2 (2014) 133-157. [20] A. Mwesigye, İ.H. Yılmaz, Thermal and thermodynamic benchmarking of liquid heat transfer fluids in a high concentration ratio parabolic trough solar collector system, Journal of Molecular Liquids, 319 (2020) 114151. [21] K. Lakzian, H.-J. Liaw, Flash Point and Safety Evaluation of Binary Mixture of Diphenyl Ether+ Biphenyl: A Commonly Utilized Heat Transfer Fluid, Thermochimica Acta, (2024) 179673. [22] K. Lakzian, H.-J. Liaw, Flash point investigation of ternary mixtures of 1-butanol/2-pentanol+ Acetic acid+ Ethylbenzene, Process Safety and Environmental Protection, (2021). [23] K. Lakzian, S. Hosseiniallahchal, H. Jalaei Salmani, A. Sanjarifard, Flash point prediction of binary totally and partially miscible water-alcohol mixtures by cubic-plus-association (CPA) equation of state, Thermochimica Acta, 691 (2020) 178719. [24] L.Y. Phoon, A.A. Mustaffa, H. Hashim, R. Mat, A review of flash point prediction models for flammable liquid mixtures, Industrial Engineering Chemistry Research, 53 (2014) 12553-12565. [25] L. Catoire, V. Naudet, A unique equation to estimate flash points of selected pure liquids application to the correction of probably erroneous flash point values, Journal of Physical Chemical Reference Data, 33 (2004) 1083-1111. [26] R.W. Garland, M.O. Malcolm, Evaluating vent manifold inerting requirements: Flash point modeling for organic acid‐water mixtures, Process Safety Progress, 21 (2002) 254-260. [27] M. Hristova, D. Damgaliev, J. Hristov, Practical data correlation of flashpoints of binary mixtures by a reciprocal function: the concept and numerical examples, Thermal Science, 15 (2011) 905-910. [28] J. Mejia, N. Salgado, C. Orrego, Effect of blends of Diesel and Palm-Castor biodiesels on viscosity, cloud point and flash point, Industrial Crops Products, 43 (2013) 791-797. [29] S.Y. Kim, B. Lee, A prediction model for the flash point of binary liquid mixtures, Journal of Loss Prevention in the Process Industries, 23 (2010) 166-169. [30] G. Liu, L. Wang, H. Qu, H. Shen, X. Zhang, S. Zhang, Z. Mi, Artificial neural network approaches on composition–property relationships of jet fuels based on GC–MS, Fuel, 86 (2007) 2551-2559. [31] J. Kumar, A. Bansal, Selection of best neural network for estimating properties of diesel-biodiesel blends, In Proceedings of the 6th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, (2007) 16-19. [32] M. Agarwal, K. Singh, S. Chaurasia, Prediction of biodiesel properties from fatty acid composition using linear regression and ANN techniques, Indian Chemical Engineer, 52 (2010) 347-361. [33] D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, L. Pidol, N. Jeuland, B. Creton, Flash point and cetane number predictions for fuel compounds using quantitative structure property relationship (QSPR) methods, Energy Fuels, 25 (2011) 3900-3908. [34] Z. Jiao, H.U. Escobar-Hernandez, T. Parker, Q. Wang, Review of recent developments of quantitative structure-property relationship models on fire and explosion-related properties, Process Safety and Environmental Protection, 129 (2019) 280-290. [35] Z. Jiao, C. Ji, S. Yuan, Z. Zhang, Q. Wang, Development of machine learning based prediction models for hazardous properties of chemical mixtures, Journal of Loss Prevention in the Process Industries, 67 (2020) 104226. [36] D.A. Saldana, L. Starck, P. Mougin, B. Rousseau, B. Creton, Prediction of flash points for fuel mixtures using machine learning and a novel equation, Energy & fuels, 27 (2013) 3811-3820. [37] G. Fayet, P. Rotureau, New QSPR Models to predict the flammability of binary liquid mixtures, Molecular informatics, 38 (2019) 1800122. [38] T. Gaudin, P. Rotureau, G. Fayet, Mixture descriptors toward the development of quantitative structure–property relationship models for the flash points of organic mixtures, Industrial Engineering Chemistry Research, 54 (2015) 6596-6604. [39] T. Gaudin, P. Rotureau, G. Fayet, Combining mixing rules with QSPR models for pure chemicals to predict the flash points of binary organic liquid mixtures, Fire Safety Journal, 74 (2015) 61-70. [40] E. Torabian, M.A. Sobati, New structure-based models for the prediction of flash point of multi-component organic mixtures, Thermochimica Acta, 672 (2019) 162-172. [41] W. Cao, Y. Pan, Y. Liu, J. Jiang, A novel method for predicting the flash points of binary mixtures from molecular structures, Safety Science, 126 (2020) 104680. [42] H. Mirshahvalad, R. Ghasemiasl, N. Raoufi, M. Malekzadeh Dirin, A neural network QSPR model for accurate prediction of flash point of pure hydrocarbons, Molecular informatics, 38 (2019) 1800094. [43] H.-J. Liaw, Minimum flash point behavior of ternary solutions with three minimum flash point binary constituents, Fuel, 217 (2018) 626-632. [44] H.-J. Liaw, C.-T. Chen, V. Gerbaud, Flash-point prediction for binary partially miscible aqueous–organic mixtures, Chemical engineering science, 63 (2008) 4543-4554. [45] H.-J. Liaw, Y.-Y. Chiu, The prediction of the flash point for binary aqueous-organic solutions, Journal of hazardous materials, 101 (2003) 83-106. [46] H.-J. Liaw, H.-Y. Chen, Study of two different types of minimum flash-point behavior for ternary mixtures, Industrial Engineering Chemistry Research, 52 (2013) 7579-7585. [47] J. Gmehling, P. Rasmussen, Flash points of flammable liquid mixtures using UNIFAC, Industrial Engineering Chemistry Fundamentals, 21 (1982) 186-188. [48] J. Gmehling, U. Onken, W. Arlt, Vapor-liquid Equilibrium Data Collection: Organic Hydroxy Compounds: Alcohols, Dechema, 1986. [49] D. White, C.L. Beyler, C. Fulper, J. Leonard, Flame spread on aviation fuels, Fire Safety Journal, 28 (1997) 1-31. [50] B. Hanley, A model for the calculation and the verification of closed cup flash points for multicomponent mixtures, Process Safety Progress, 17 (1998) 86-97. [51] S. Lee, D.-M. Ha, The lower flash points of binary systems containing non-flammable component, Korean Journal of Chemical Engineering, 20 (2003) 799-802. [52] H.-J. Liaw, Y.-H. Lee, C.-L. Tang, H.-H. Hsu, J.-H. Liu, A mathematical model for predicting the flash point of binary solutions, Journal of Loss Prevention in the Process Industries, 15 (2002) 429-438. [53] H. Jalaei Salmani, M.N. Lotfollahi, S.H. Mazloumi, A model for predicting flash point of alkane-alkane and water-alcohol mixtures by the Cubic-Plus-Association Equation of State, Process Safety and Environmental Protection, 119 (2018) 191-197. [54] A. Di Benedetto, R. Sanchirico, V. Di Sarli, Flash point of flammable binary mixtures: synergistic behavior, Journal of Loss Prevention in the Process Industries, 52 (2018) 1-6. [55] R. Sanchirico, V. Di Sarli, A. Di Benedetto, Volatile point of dust mixtures and hybrid mixtures, Journal of Loss Prevention in the Process Industries, 56 (2018) 370-377. [56] H.-J. Liaw, T.-P. Lee, J.-S. Tsai, W.-H. Hsiao, M.-H. Chen, T.-T. Hsu, Binary liquid solutions exhibiting minimum flash-point behavior, Journal of loss Prevention in the Process Industries, 16 (2003) 173-186. [57] D.-M. Ha, S. Lee, M.-H. Back, Measurement and estimation of the lower flash points for the flammable binary systems using a Tag open cup tester, Korean Journal of Chemical Engineering, 24 (2007) 551-555. [58] L. Catoire, S. Paulmier, V. Naudet, Experimental determination and estimation of closed cup flash points of mixtures of flammable solvents, Process safety progress, 25 (2006) 33-39. [59] M. Noorollahy, A.Z. Moghadam, A.A. Ghasrodashti, Calculation of mixture equilibrium binary interaction parameters using closed cup flash point measurements, Chemical Engineering Research Design, 88 (2010) 81-86. [60] S. da Cunha, H.-J. Liaw, V. Gerbaud, On the relation between azeotropic behavior and minimum/maximum flash point occurrences in binary mixtures of flammable compounds, Fluid Phase Equilibria, 452 (2017) 113-134. [61] M. Vidal, W. Rogers, M. Mannan, Prediction of minimum flash point behaviour for binary mixtures, Process Safety and Environmental Protection, 84 (2006) 1-9. [62] H.-J. Liaw, S.-C. Lin, Binary mixtures exhibiting maximum flash-point behavior, Journal of hazardous materials, 140 (2007) 155-164. [63] H.-J. Liaw, C.-T. Chen, C.-C. Cheng, Y.-T. Yang, Elimination of minimum flash-point behavior by addition of a specified third component, Journal of Loss Prevention in the Process Industries, 21 (2008) 82-100. [64] H.-Y. Chen, H.-J. Liaw, Study of minimum flash-point behavior for ternary mixtures of flammable solvents, Procedia Engineering, 45 (2012) 507-511. [65] L. Serafimov, V. Raeva, V. Stepanov, Classification of scalar property isoline diagrams of homogeneous ternary mixtures, Theoretical Foundations of Chemical Engineering, 46 (2012) 221-232. [66] V. Kiva, E. Hilmen, S. Skogestad, Azeotropic phase equilibrium diagrams: a survey, Chemical engineering science, 58 (2003) 1903-1953. [67] S. da Cunha, V. Gerbaud, N. Shcherbakova, H.-J. Liaw, Classification for ternary flash point mixtures diagrams regarding miscible flammable compounds, Fluid Phase Equilibria, 466 (2018) 110-123. [68] K. Lakzian, H.-J. Liaw, Flash point study of ternary mixtures comprising binary constituents that exhibit maximum flash point behavior and minimum flash point behavior, Thermochimica Acta, (2022) 179246. [69] H.-J. Liaw, W.-C. Hsu, K. Lakzian, Exploration of two types of maximum–minimum flash point behavior of ternary mixtures, Journal of Loss Prevention in the Process Industries, 80 (2022) 104915. [70] J. Li, F. Bu, C. Ru, H. Jiang, Y. Duan, Y. Sun, X. Pu, L. Shang, X. Li, C. Zhao, Enhancing the selectivity of Nafion membrane by incorporating a novel functional skeleton molecule to improve the performance of direct methanol fuel cells, Journal of Materials Chemistry A, 8 (2020) 196-206. [71] M. Li, Z. Shu, L. Yi, B. Chen, Y. Zhao, S. Geng, Combustion behavior and oscillatory regime of flame spread over ethanol aqueous solution with different proportions, Fuel, 253 (2019) 220-228. [72] X. Ren, J. Li, G. Pei, P. Li, L. Gong, Parametric and economic analysis of high-temperature cascade organic Rankine cycle with a biphenyl and diphenyl oxide mixture, Energy Conversion Management, 276 (2023) 116556. [73] R. Prinsloo, C.E. Deering, E. Fitzpatrick, R.A. Marriott, Densities for Sulfur in Benzene and Densities with Solubilities for a Eutectic Mixture of Biphenyl plus Diphenyl Ether: A General Solubility Equation for the Treatment of Aromatic Physical Sulfur Solvents, Journal of Chemical Engineering Data, 67 (2022) 994-1006. [74] M. Jang, B.S. Shin, Y.S. Jo, J.W. Kang, S.K. Kwak, C.W. Yoon, H. Jeong, A study on hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether, Journal of energy chemistry, 42 (2020) 11-16. [75] T. van Der Stelt, E. Casati, N. Chan, P. Colonna, Technical equation of state models for heat transfer fluids made of biphenyl and diphenyl ether and their mixtures, Fluid Phase Equilibria, 393 (2015) 64-77. [76] D. Cabaleiro, M. Pastoriza-Gallego, M. Piñeiro, J. Legido, L. Lugo, Thermophysical properties of (diphenyl ether+ biphenyl) mixtures for their use as heat transfer fluids, The Journal of Chemical Thermodynamics, 50 (2012) 80-88. [77] D. Cabaleiro, C. Gracia-Fernández, L. Lugo, (Solid+ liquid) phase equilibria and heat capacity of (diphenyl ether+ biphenyl) mixtures used as thermal energy storage materials, The Journal of Chemical Thermodynamics, 74 (2014) 43-50. [78] R. Blanco-Moreno, L.P. Sáez, V.M. Luque-Almagro, M.D. Roldán, C. Moreno-Vivián, Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat transfer fluid used in thermo-solar plants, New biotechnology, 35 (2017) 35-41. [79] ASTM, American Society for Testing and Materials ASTM D 56: Standard Test Method for Flash Point by Tag Closed Tester. ASTM, West Conshohocken, PA, in, 2005. [80] S.M. Santos, D.C. Nascimento, M.C. Costa, A.M. Neto, L.V. Fregolente, Flash point prediction: Reviewing empirical models for hydrocarbons, petroleum fraction, biodiesel, and blends, Fuel, 263 (2020) 116375. [81] C.C. Lee, M.-V. Tran, B.T. Tan, G. Scribano, C.T. Chong, A comprehensive review on the effects of additives on fundamental combustion characteristics and pollutant formation of biodiesel and ethanol, Fuel, (2020) 119749. [82] N. Wei, J. Quarterman, S.R. Kim, J.H. Cate, Y.-S. Jin, Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast, Nature communications, 4 (2013) 1-8. [83] A. Smirnov, A. Sadaeva, K. Podryadova, M. Toikka, Quaternary liquid-liquid equilibrium, solubility and critical states: Acetic acid–n-butanol–n-butyl acetate–water at 318.15 K and atmospheric pressure, Fluid Phase Equilibria, 493 (2019) 102-108. [84] T.R. Brown, R.C. Brown, A review of cellulosic biofuel commercial‐scale projects in the United States, Biofuels, Bioproducts and Biorefining, 7 (2013) 235-245. [85] K. Inui, T. Kurabayashi, S. Sato, N. Ichikawa, Effective formation of ethyl acetate from ethanol over Cu-Zn-Zr-Al-O catalyst, Journal of Molecular Catalysis A: Chemical, 216 (2004) 147-156. [86] F.J. Hernández Fernández, A. Pérez de los Ríos, J. Quesada‐Medina, S. Sánchez‐Segado, Ionic liquids as extractor agents and reaction media in ester synthesis, ChemBioEng Reviews, 2 (2015) 44-53. [87] D. Rutz, R. Janssen, Biofuel technology handbook, WIP Renewable energies, 2007. [88] A. Demirbas, Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy conversion management, 49 (2008) 2106-2116. [89] A. Devaraj, I. Vinoth Kanna, N. Tamil Selvam, A. Prabhu, Emission analysis of cashew nut biodiesel-pentanol blends in a diesel engine, International Journal of Ambient Energy, (2020) 1-5. [90] S. Thiyagarajan, A. Sonthalia, V.E. Geo, T. Prakash, V. Karthickeyan, B. Ashok, K. Nanthagopal, B. Dhinesh, Effect of manifold injection of methanol/n-pentanol in safflower biodiesel fuelled CI engine, Fuel, 261 (2020) 116378. [91] N. Yilmaz, F.M. Vigil, K. Benalil, S.M. Davis, A. Calva, Effect of biodiesel–butanol fuel blends on emissions and performance characteristics of a diesel engine, Fuel, 135 (2014) 46-50. [92] Z. Zheng, X. Wang, X. Zhong, B. Hu, H. Liu, M. Yao, Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2, 5-dimethylfuran on a diesel engine, Energy, 115 (2016) 539-549. [93] G. Goga, B.S. Chauhan, S.K. Mahla, H.M. Cho, Performance and emission characteristics of diesel engine fueled with rice bran biodiesel and n-butanol, Energy Reports, 5 (2019) 78-83. [94] L. Wei, C. Cheung, Z. Ning, Effects of biodiesel-ethanol and biodiesel-butanol blends on the combustion, performance and emissions of a diesel engine, Energy, 155 (2018) 957-970. [95] N. Yilmaz, T.M. Sanchez, Analysis of operating a diesel engine on biodiesel-ethanol and biodiesel-methanol blends, Energy, 46 (2012) 126-129. [96] J. Huang, H. Xiao, X. Yang, F. Guo, X. Hu, Effects of methanol blending on combustion characteristics and various emissions of a diesel engine fueled with soybean biodiesel, Fuel, 282 (2020) 118734. [97] H.-J. Liaw, C.-L. Tang, J.-S. Lai, A model for predicting the flash point of ternary flammable solutions of liquid, Combustion and Flame, 138 (2004) 308-319. [98] J. Gmehling, U. Onken, U. Weidlich, Vapor-Liquid Equilibrium Data Collection, Vol. 1. Part 2d. DECHEMA, Frankfurt, Germany., 1982. [99] M. Baker, Available at: http://www.mallbaker.com/Americas/catalog/default.asp?searchfor=msds (accessed 2008). in, 2008. [100] Univar, http://www.univarusa.com/assistmsds.html (accessed 2008). (2008). [101] I.S. Oh, S.J. In, The Measurement and Prediction of Flash Point for Binary Mixtures of Methanol, Ethanol, 2-Propanol and 1-Butanol at 101.3 kPa, Fire Science Engineering, 29 (2015) 1-6. [102] Fisher_Scientific, Available at: https://www.fishersci.com/store/msds?partNumber=A3984&productDescription=butanol-technical-fisher-chemical&vendorId=VN00033897&keyword=true&countryCode=US&language=en. Accessed on May 7, 2021., (2021a). [103] Merck, Available at: https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-101990?Origin=PDP. Accessed on May 7, 2021., in, 2021a. [104] Merck, Available at: https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-807501?Origin=SERP. Accessed on May 7, 2021., in, 2021b. [105] Fisher_Scientific, Available at: https://www.fishersci.com/store/msds?partNumber=AC129980010&productDescription=dlpentanol--acros-organicstrade&vendorId=VN00032119&keyword=true&countryCode=US&language=en. Accessed on May 7, 2021., (2021b). [106] K. Satyanarayana, M. Kakati, Note: Correlation of flash points, Fire Materials, 15 (1991) 97-100. [107] D.-M. Ha, S. Lee, The Measurement and Prediction of Maximum Flash Point Behavior for Binary Solution, Fire Science Engineering, 27 (2013) 70-74. [108] A. Haghtalab, J.Y. Seyf, Y. Mansouri, Flash point prediction of the binary and ternary systems using the different local composition activity coefficient models, Fluid Phase Equilibria, 415 (2016) 58-63. [109] Merck, Availabe at: https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-100066?Origin=PDP. Accessed on May 7, 2021., (2021c). [110] Fisher_Scientific, Available at: https://www.fishersci.com/store/msds?partNumber=A465500&productDescription=acetic-acid-glacial-optimatrade-fisher-chemicaltrade&vendorId=VN00033897&keyword=true&countryCode=US&language=en. Accessed on May 7, 2021., (2021c). [111] J. Gmehling, U. Onken, P. Grenzheuser, Vapor-Liquid Equilibrium Data Collection, Vol. 1. Part 5. DECHEMA, Frankfurt, Germany., 1982. [112] I.C. Hwang, S.J. In, The Measurement of Flash Point for Binary Mixtures of 2, 2, 4-Trimethylpentane, Methylcyclohexane, Ethylbenzene and p-xylene at 101.3 kPa, Clean Technology, 26 (2020) 279-285. [113] Fisher_Scientific, Available at: https://www.fishersci.com/store/msds?partNumber=AC118080025&productDescription=ethylbenzene--pure-acros-organicstrade&vendorId=VN00032119&keyword=true&countryCode=US&language=en. Accessed on May 7, 2021., (2021d). [114] D.J. Luning Prak, G.R. Simms, M. Hamilton, J.S. Cowart, Impact of low flash point compounds (hydrocarbons containing eight carbon atoms) on the flash point of jet fuel and n-dodecane, Fuel, 286 (2021) 119389. [115] C.L. Yaws, The Yaws handbook of vapor pressure: Antoine coefficients, Gulf Professional Publishing, 2015. [116] TCI, Available at: https://www.tcichemicals.com/OP/en/p/B0764. Accessed on September 03, 2021., (2021). [117] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/product/aldrich/291838#. Accessed on September 03, 2021., (2021). [118] S.A. Al-Muhtaseb, M.A. Fahim, Phase equilibria of the ternary system water/acetic acid/2-pentanol, Fluid phase equilibria, 123 (1996) 189-203. [119] J. Gmehling, P. Rasmussen, A. Fredenslund, Vapor-liquid equilibriums by UNIFAC group contribution. Revision and extension. 2, Industrial Engineering Chemistry Process Design Development, 21 (1982) 118-127. [120] J. Gmehling, J. Li, M. Schiller, A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties, Industrial Engineering Chemistry Research, 32 (1993) 178-193. [121] NFPA, Public Comment No. 2-NFPA 497-2019 [Section No. C.2.1]. (2019). [122] NFPA, National Fire Protection Association Flammable and Combustible Liquids Code, vol. 30, NFPA, Quincy, Massachusetts, USA., in, 2021. [123] DOT, Department of Transportation. Shippers – General Requirements for Shipments and Packagings, Class3 – Assignment of Packing Group, 49CFR173.121. National Archives and Records administration, USA., (2015). [124] G. Joshi, J.K. Pandey, S. Rana, D.S. Rawat, Challenges and opportunities for the application of biofuel, Renewable Sustainable Energy Reviews, 79 (2017) 850-866. [125] V.K. Gupta, M.G. Tuohy, Biofuel technologies, Recent Developments. Editorial Springer, 2013. [126] V. Babu, M. Murthy, Butanol and pentanol: The promising biofuels for CI engines–A review, Renewable Sustainable Energy Reviews, 78 (2017) 1068-1088. [127] Y. Devarajan, B.K. Nagappan, D.B. Munuswamy, Performance and emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends, Korean Journal of Chemical Engineering, 34 (2017) 1021-1026. [128] F. Goembira, K. Matsuura, S. Saka, Biodiesel production from rapeseed oil by various supercritical carboxylate esters, Fuel, 97 (2012) 373-378. [129] H.-J. Liaw, K. Lakzian, Y.-H. Wang, M.-C. Chen, Model for estimating the maximum water content that would maintain the flammability of an aqueous− organic mixture, Journal of Loss Prevention in the Process Industries, (2024) 105253. [130] P. Yang, T.T. Myint, Integrating entrapped mixed microbial cell (EMMC) technology for treatment of wastewater containing dimethyl sulfoxide (DMSO) for reuse in semiconductor industries, Clean technologies environmental policy, 6 (2003) 43-50. [131] S.-C.J. Hwang, J.-Y. Wu, Y.-H. Lin, I.-C. Wen, K.-Y. Hou, S.-Y. He, Optimal dimethyl sulfoxide biodegradation using activated sludge from a chemical plant, Process Biochemistry, 42 (2007) 1398-1405. [132] T. MI, MI (Taiwan), Establishment Standard and Safety Control Regulation for Manufacturing, Storing, Processing Public Hazardous Substances and Flammable Pressurized Gases Place, Ministry of the Interior, Taiwan, 2019. https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=D0120025. Accessed on February 03, 2023., (2019). [133] C.-C. Wang, C.-M. Lee, Isolation of the ɛ-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile–butadiene–styrene resin, Journal of hazardous materials, 145 (2007) 136-141. [134] M. Munoz, G. Pliego, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Application of intensified Fenton oxidation to the treatment of sawmill wastewater, Chemosphere, 109 (2014) 34-41. [135] J. Zhang, F. Han, P. Zhang, G. Chen, X. Wei, Gas−Liquid Equilibrium Data for the Mixture Gas of Sulfur Dioxide+ Nitrogen with Poly (ethylene glycol) Aqueous Solutions at 298.15 K and 122.61 kPa, Journal of Chemical Engineering Data, 55 (2010) 959-961. [136] J. Zhang, J. Xiao, Y. Liu, X. Wei, Solubility of carbonyl sulfide in aqueous solutions of ethylene glycol at temperatures from (308.15 K to 323.15) K, Journal of Chemical Engineering Data, 55 (2010) 5350-5353. [137] D.R. Vardon, A.E. Settle, V. Vorotnikov, M.J. Menart, T.R. Eaton, K.A. Unocic, K.X. Steirer, K.N. Wood, N.S. Cleveland, K.E. Moyer, Ru-Sn/AC for the aqueous-phase reduction of succinic acid to 1, 4-butanediol under continuous process conditions, ACS Catalysis, 7 (2017) 6207-6219. [138] A. Ghanadzadeh, H. Ghanadzadeh, K. Bahrpaima, Experimental and theoretical study of the phase equilibria in ternary aqueous mixtures of 1, 4-butanediol with alcohols at 298.2 K, Journal of Chemical Engineering Data, 54 (2009) 1009-1014. [139] F. Cheng, J. Sun, Z. Wang, X. Zhao, Y. Hu, Organosolv fractionation and simultaneous conversion of lignocellulosic biomass in aqueous 1, 4-butanediol/acidic ionic-liquids solution, Industrial Crops Products, 138 (2019) 111573. [140] T. Kishimoto, Y. Sano, Delignification mechanism during high-boiling solvent pulping. Part 1. Reaction of guaiacylglycerol-β-guaiacyl ether, de Gruyter, (2001). [141] H.-J. Liaw, W.-H. Lu, V. Gerbaud, C.-C. Chen, Flash-point prediction for binary partially miscible mixtures of flammable solvents, Journal of hazardous materials, 153 (2008) 1165-1175. [142] H.-J. Liaw, The condition for aqueous–organic mixtures not to flash, Procedia Engineering, 84 (2014) 280-284. [143] H.-J. Liaw, V. Gerbaud, Y.-H. Li, Prediction of miscible mixtures flash-point from UNIFAC group contribution methods, Fluid Phase Equilibria, 300 (2011) 70-82. [144] H.-J. Liaw, C.-C. Chen, C.-H. Chang, N.-K. Lin, C.-M. Shu, Model to estimate the flammability limits of fuel–air–diluent mixtures tested in a constant pressure vessel, Industrial engineering chemistry research, 51 (2012) 2747-2761. [145] H.-J. Liaw, Z.-H. Li, Mathematical model for describing the influence of initial pressure on the flammability limits of light hydrocarbons at subatmospheric pressures, Journal of Loss Prevention in the Process Industries, 77 (2022) 104776. [146] H.-J. Liaw, C.-C. Chen, N.-K. Lin, C.-M. Shu, S.-Y. Shen, Flammability limits estimation for fuel–air–diluent mixtures tested in a constant volume vessel, Process Safety and Environmental Protection, 100 (2016) 150-162. [147] W. Wilding, T. Knotts, N. Giles, R. Rowley, DIPPR data compilation of pure chemical properties, Design Institute for Physical Properties. New York, NY: American Institute of Chemical Engineers., 2020. [148] NIST, NIST Chemistry WebBook. National Institute of Standards and Technology. Available at: https://webbook.nist.gov/chemistry/. Accessed on Novemeber 23, 2022., (2022). [149] B.E. Poling, J.M. Prausnitz, J.P. O’connell, The Properties of gases and liquids, McGraw-Hill Education, 2001. [150] V. Tumova, M. Prenosil, J. Pinkava, Vapor-liquid equilibrium in the 6-caprolactam + water system of normal and reduced pressures, Chemicky prumysl, 8, 585-7 (1958). [151] A.M. Kiryukhin, T.M. Lesteva, N.P. Markuzin, L.S. Budantseva, Phase equilibrium in hydrocarbon-alcohol-water systems. II. Liquid-vapor equilibrium in C8-alcohol-C5-7-hydrocarbon systems, Prom-st Sint. Kauch, 4 (1982). [152] J. Gmehling, U. Onken, W. Arlt, Vapor-Liquid Equilibrium Data Collection, Vol. 1, 1a. DECHEMA, Frankfurt, Germany., (1981). [153] Y. Peng, L. Ping, S. Lu, J. Mao, Vapor–liquid equilibria for water+ acetic acid+(N, N-dimethylformamide or dimethyl sulfoxide) at 13.33 kPa, Fluid Phase Equilibria, 275 (2009) 27-32. [154] O. Chiavone-Filho, P. Proust, P. Rasmussen, Vapor-liquid equilibria for glycol ether+ water systems, Journal of Chemical Engineering Data, 38 (1993) 128-131. [155] J. Schmelzer, J. Pusch, Phase equilibria in binary systems containing N-monosubstituted amides and hydrocarbons, Fluid phase equilibria, 110 (1995) 183-196. [156] J. Gmehling, U. Onken, U. Weidlich, Vapor-Liquid Equilibrium Data Collection, Vol. 1. Part 2b. DECHEMA, Frankfurt, Germany., (1982). [157] Fisher_Scientific, Available at: https://www.fishersci.com/store/msds?partNumber=D1391&productDescription=DIMETHYL+SULFOXIDE+GC+HS+1L&vendorId=VN00033897&countryCode=US&language=en. Accessed on June 22, 2022., (2022c). [158] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/398039. Accessed on June 22, 2022., (2022c). [159] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/398039. Accessed on June 22, 2022., (2022d). [160] K. Hall, F. M, D. J, Vapor Pressure and Antoine Constants for Oxygen Containing Organic Compounds, Springer, 2000. [161] Merck, Availabe at: https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-820624?Origin=PDP. Accessed on November 23, 2022., (2022a). [162] M.K. Yesilyurt, A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol, Fuel, 275 (2020) 117893. [163] Fisher_Scientific, Available at: https://www.fishersci.com/store/msds?partNumber=E1794&productDescription=2-BUTOXYETHANOL+4L&vendorId=VN00033897&countryCode=US&language=en. Accessed on June 22, 2022., (2022d). [164] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/mm/bx1715. Accessed on June 22, 2022., (2022e). [165] H. Yue, Y. Zhao, X. Ma, J. Gong, Ethylene glycol: properties, synthesis, and applications, Chemical Society Reviews, 41 (2012) 4218-4244. [166] Huber, Available at: https://www.huber-online.com/download/techsheets/Huber_Frostschutzmittel_safetysheet_EN.pdf. Accessed on June 22, 2022., (2022). [167] Merck, Available at: https://www.merckmillipore.com/TW/zh/product/msds/MDA_CHEM-820931?Origin=PDP, (2022b). [168] Q. Jia, Q. Wang, P. Ma, S. Xia, F. Yan, H. Tang, Prediction of the flash point temperature of organic compounds with the positional distributive contribution method, Journal of Chemical & Engineering Data, 57 (2012) 3357-3367. [169] J.D. de Oliveira Henriques, F.H.B. Sosa, R.M. Dias, P.F.M. Martinez, M.C. da Costa, Flash point and excess molar volumes of binary mixtures containing d-limonene and alcohol compounds from propanol to dodecanol, The Journal of Chemical Thermodynamics, 150 (2020) 106224. [170] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/aldrich/c2204. Accessed on June 22, 2022., (2022a). [171] Fisher_Scientific, Available at: https://www.fishersci.com/store/msds?partNumber=AAL0699922&productDescription=EPSILON-CAPROLACTAM+99%25+100G&vendorId=VN00024248&countryCode=US&language=en. Accessed on June 22, 2022., (2022a). [172] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sial/493732. Accessed on June 22, 2022., (2022b). [173] Carl_Roth, Available at: https://www.carlroth.com/medias/SDB-4306-GB-EN.pdf?context=bWFzdGVyfHNlY3VyaXR5RGF0YXNoZWV0c3wyNjkxNjN8YXBwbGljYXRpb24vcGRmfHNlY3VyaXR5RGF0YXNoZWV0cy9oMjgvaDhhLzg5NTA3MzAyNjA1MTAucGRmfDI2ZGVlZmFjYTU1ZmYxZDNlZjBhZDI5YWYzMTc2MjExMGZjODFjY2QwNzk5OTc2NTQzN2IyMGYyYTY2MjYzOTI. Accessed on June 22, 2022., (2022b). [174] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/sigald/443778. Accessed on June 22, 2022., (2022f). [175] Y. Tian, C.-Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications, Applied energy, 104 (2013) 538-553. [176] L. Criado-García, R. Garrido-Delgado, L. Arce, F. López, R. Peón, M. Valcárcel, Potential of ion mobility spectrometry versus FT-MIR and GC-MS to study the evolution of a heat transfer fluid after its heating process in a thermosolar plant, Microchemical Journal, 121 (2015) 163-171. [177] H.-J. Liaw, V. Gerbaud, C.-Y. Chiu, Flash point for ternary partially miscible mixtures of flammable solvents, Journal of Chemical Engineering Data, 55 (2010) 134-146. [178] X. Liu, Z. Liu, Research progress on flash point prediction, Journal of Chemical Engineering Data, 55 (2010) 2943-2950. [179] Fisher_Scientific, Available at: https://www.fishersci.com/shop/products/diphenyl-ether-99-thermo-scientific/AAA1579130. Accessed on October 2023., (2023). [180] S. Srihari, B. Chaitanya, S. Thirumalini, Experimental study on influence of diphenyl ether and diethyl amine on exhaust emissions of diesel engine, Materials Today: Proceedings, 46 (2021) 4835-4839. [181] Thermo_Fisher, Available at: https://www.thermofisher.com/order/catalog/product/A15791.0E. Accessed on October 2023., (2023a). [182] Sigma-Aldrich, Available at: https://www.sigmaaldrich.com/TW/en/sds/ALDRICH/W312908. Accessed on October 2023., (2023). [183] Carl_Roth, Available at: https://www.carlroth.com/com/en/aromatic-building-blocks/biphenyl/p/3216.2. Accessed on October 2023., (2023). [184] Thermo_Fisher, Available at: https://www.thermofisher.com/order/catalog/product/A10265.0B. Accessed on October 2023., (2023b). [185] D.W. Boyd, Systems analysis and modeling: a macro-to-micro approach with multidisciplinary applications. CHAPTER 8 - Stochastic Analysis., Elsevier, 2000. [186] M.M. Papari, M. Kiani, J. Moghadasi, Performance assessment of Tao–Mason equation of state: Results for vapor–liquid equilibrium properties, Journal of Industrial Engineering Chemistry, 17 (2011) 667-674. [187] Chempoint, Available at: https://www.chempoint.com/en-emea/products/dow/dowtherm-synthetic-thermal-fluids/dowtherm-synthetic-thermal-fluids/dowtherm-a. Accessed on December 2023., (2023). [188] Dalian_richfortune_chemicals, Available at: http://www.richfortunechem.com/index.php?action=news&id=487. Accessed on December 2023., (2023). [189] ASTM, Standard test methods for flash-point by ASTM D 93 Pensky-Martens closed cup tester, American Society for Testing and Materials, West Conshohocken, PA, in, 2008.
|