|
[1] F.J. Zanner, Vacuum Melting, In Encyclopedia of Materials: Science and Technology, 2nd ed, Elsevier Ltd.: Sandia Park, NM, USA, 2004, pp.1~6. [2] R.P. Carlisle, Scientific American Inventions and Discoveries, United States of America: John Wiley & Sons, 2004, pp.380-381. [3] 黃振賢,機械材料,新修訂二版,台北縣中和市,新文京開發出版股份有限公司,2005。 [4] N. Birks, G.H. Meier, F.S. Petit, Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, 2006, pp.90. [5] D. Peckner, I.M. Bernstein, Handbook of Stainless Steels, McGraw-Hill, 1977. [6] K.H. Lo, J.K.L. Lai, C.H. Shek, Stainless Steels: An Introduction and Recent Development, Dubai, U.A.E: Bentham Science Publishers, 2012. [7] T. Fujita, Current Progress In Advanced High Cr Ferritic Steels for High-Temperature Applications, ISIJ International ,32(2),1992, pp.175-181. [8] J.E. Truman, Stainless steels, F.B. Pickering (Ed.), Constitution and Properties of Steels, VCH, Weinheim, 1992, pp.529-582. [9] T. Ujiro, K. Yoshioka, O. Hashimoto, T. Kawasaki, S. Fuyuki, S. Amano, Development of High-Alloy Stainless Steels with Corrosion Resistance to Seawater Environment, Proceedings of International Conference on Stainless Steels, Chiba, ISIJ International, 1991, pp.86-92. [10] K. Oikawa, H. Mitsui, T. Ebata, T. Takiguchi, T. Shimizu, K. Ishikawa, T. Noda, M. Okabe, K. Ishida, A New Pb-free Machinable Ferritic Stainless Steel, ISIJ International, 42 (7), 2002, pp.806-807. [11] P. Marshall , Austenitic Stainless Steels: Microstructure and Mechanical Properties, Springer, 1984. [12] H.M. Geng, X.C. Wu, H.B. Wang, Y.G. Min, Effects of Copper Content on the Machinability and Corrosion Resistance of Martensitic Stainless Steel. Journal of Materials Science , 43, 2008, pp.83-87. [13] H.D. Solomon, Stainless Steels: Duplex, In Encyclopedia of Materials: Science and Technology, 2nd ed, Elsevier Ltd, General Electric R & D Center, Schenectady, New York, USA, 2001, pp.8802-8804. [14] P. Lacombe, B. Baroux , G. Beranger , L. Columbier , J. Hochmann , Stainless Steels, Les Ulis, France : Les Editions de Physique, 1993, pp.613-659. [15] T.M. Devine, Influence of the Carbon Content and Ferrite Morphology on the Sensitization of Duplex Stainless, Metallurgical Transactions A,11,1980, pp.791-800. [16] T.M. Devine, Mechanism of Intergranular Corrosion of Austenitic and Duplex 308 Stainless Steel, Journal of the Electrochemical Society, 126(3), 1979, pp.374-385. [17] B. Pollard, Selection of Wrought Precipitation-Hardening Stainless Steels, Brazing and Soldering, 6 ,ASM Handbook, ASM, International,1993. [18] K.C. Anthony, Aging Reaction in Precipitation Hardenable Stainless steel, JOM, 15, 1963, pp.922-927. [19] M.O. Speidel, Proceedings of the 1st International Conference on High Nitrogen Steels “HNS 88”, Lille, May 1988 ,The Institute of Metals, London, 1989, pp.92. [20] M. B. Horovitz, F. Beneduce Neto, A. Garbogini, A. P. Tschiptschin, Nitrogen Bearing Martensitic Stainless Steels: Microstructure and Properties, ISIJ International, 36(7), 1996, pp.840-845. [21] A. A. Ono, N. Alonso, A.P. Tschiptschin , The Corrosion Resistance of Nitrogen Bearing Martensitic Stainless Steels, ISIJ International, 36(7),1996, pp.813-817. [22] H. Leda, Nitrogen in Martensitic Stainless Steel. Journal of Materials Processing Technology, 53(1-2),1995, pp. 263-72. [23] T. Gualtieri, A. Bandyopadhyay, Additive Manufacturing of Compositionally Gradient Metal-Ceramic Structures: Stainless Steel to Vanadium Carbide, Materials & Design , 139, 2018, pp.419-428. [24] H.M. Cobb, The History of Stainless Steel, Materials Park, OH, USA: ASM International, 2010. [25] C.A. Zapffe, The Fascinating History of Stainless Steel-The Miracle Metal, Republic Steel Corporation, Cleveland, Ohio, 1960. [26] P. D. Harvey,, Engineering Properties of Steel, ASM International, 1982. [27] Iron and Steel Society, Steel Products Manual: Stainless and Heat Resisting Steels, Iron and Steel Society, 1990. [28] J. R. Davis, ASM Specialty Handbook Stainless Steels, ASM International, 1994 th, 1995. [29] A. M. Lancha, M. Serrano, J. Lapena, D.G. Briceño, Failure Analysis of a River Circulating Pump Shaft from a NPP, Engineering Failure Analysis, 8(3), 2001, pp.271-291. [30] J.G.G. Rodriguez, G.B. Martinez, V.M.S. Bravo, Effect of Heat Treatment on the Stress Corrosion Cracking Behavior of 403 Stainless Steel in NaCl at 95°C, Mater, Materials Letters, 43(4), April 2000, pp.208-214. [31] J.G.G. Rodriguez, V.M.S. Bravo, A.M. Villafane, Hydrogen Embrittlement of Type 410 Stainless Steel in Sodium Chloride, Sodium Sulfate, and Sodium Hydroxide Environments at 90°C. Corrosion, 53(6),1997, pp. 499-504.. [32] J.G.G. Rodriguez, V.M.S. Bravo, A.M. Villafane, Stress Corrosion Cracking of Type 403 Stainless Steel in Sodium Chloride at 95°C Under Different Heat Treatment Conditions, Corrosion, 55(10),1999, pp. 991-996. [33] T.Y. Zeng, W. Li, N.M. Wang, W. Wang, K. Yang, Microstructural Evolution During Tempering and Intrinsic Strengthening Mechanisms in a Low Carbon Martensitic stainless Bearing Steel,Materials Science and Engineering: A, 836, 2022, 142736. [34] K. P. Balan, A.V. Reddy, D. S. Sarma, Austenite Precipitation During Tempering in 16Cr-2Ni Martensitic Stainless Steels, Scripta Materialia ,39(7),1998, pp.901-905. [36] K. Balan, K. V. R. Rao, D. S. Sarma, Determination of Potency Factor of Cobalt for Estimation of Nickel Equivalent in 16Cr-2Ni Martensitic Stainless Steel, Materials Science and Technology, 15(7), 1999, pp.798-802. [35] S.M. Dubiel, J. Cieślak ,Sigma-phase in Fe-Cr and Fe-V Alloy Systems and its Physical Properties , Critical Reviews in Solid State and Materials Sciences, 36(4), 2011, pp.191-208. [37] K.H. Lo, J.K.L. Lai. On the Cryogenic Magnetic Transition and Martensitic Transformation of the Austenite phase of 7MoPLUS Duplex Stainless Steels, Journal of Magnetism and Magnetic Materials, 322(16) ,2010, pp.2335-2339. [38] H. Schneider, Investment Casting of High-Hot Strength 12% Chrome Steel, Foundry Trade Journal International, 108, 1960, pp.562-563. [39] D.E.P. Klenam,Effect of Temperature and Carbonaceous Environment on the Fatigue Behaviour of AISI 316L Austenitic Stainless Steel, University of the Witwatersrand, 2012, , pp.15. [40] A. D. Gianfrancesco, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, 2017. [41] M.C. Nebhnani, U.C. Bhakta, I. Gowrisankar, D.Biswas, Failure of a Martensitic Stainless Steel Pipe Weld in a Fossil Fuel power plant. Engineering Failure Analysis, 2002, 9(3), pp.277-286. [42] M.C. Balmforth, J.C.Lippold, A New Ferritic-Martensitic Stainless Steel Constitution Diagram, Welding Journal, 79(12), 2000, pp.339-345. [43] M.C. Balmforth, J.C. Lippold, A Preliminary Ferritic-Martensitic Stainless Steel Constitution Diagram, Welding Journal , 77(1) 1998, pp.1-7. [44] Bayati H, Elliott R. Austempering Process in High Manganese Alloyed Ductile Cast Iron. Materials Science and Technology, 11(2),1995, pp.118-129 [45] A.V. Nemani, M. Ghaffari, S. Salahi, A. Nasiri, Effects of Post-Printing Heat Treatment on the Microstructure and Mechanical Properties of a Wire Arc Additive Manufactured 420 Martensitic Stainless Steel Part, Materials Science and Engineering: A, 813, 2021, 141167. [46] Candelaria AF, Pinedo CE. Influence of the Heat Treatment on the Corrosion Resistance of the Martensitic Stainless Steel Type AISI420, Journal of Materials Science Letters, 22(16), 2003, pp.1151-1153. [47] J.Y. Park, Y.S. Park. The Effects of Heat-Treatment Parameters on Corrosion Resistance and Phase Transformations of 14Cr-3Mo Martensitic Stainless Steel, Materials Science and Engineering: A , 449(51),2007, pp.1131-1134. [48] J.Y. Park, Y.S. Park. Effects of Austenitizing Treatment on the Corrosion Resistance 14Cr-3Mo Martensitic Stainless Steel, Corrosion, 62(6) , 2006, pp.541-547. [49] Y.S. Choi, J.G. Kim, Y.S. Park, J.Y. Park, Austenitizing Treatment Influence on the Electrochemical Corrosion Behavior of 0.3C-14Cr-3Mo Martensitic Stainless Steel, Materials Letters ,60(1),2007, pp.244-247. [50] H.D. Kim, I.S. Kim, Effect of Austenitizing Temperature on Microstructure and Mechanical Properties of 12%Cr Steel, ISIJ International, 34(2), 1994, pp.198-204. [51] J.M. Vitek, R.L. Klueh, Precipitation Reactions During the Heat Treatment of Ferritic Steels, Metallurgical Transactions A, 14(6) ,1983, pp.1047-1055. [52] K.P. Balan, A.V. Reddy, D.S. Sarma, Effect of Single and Double Austenitization Treatments on the Microstructure and Mechanical Properties of 16Cr-2Ni Steel, Journal of Materials Engineering and Performance ,1999, 8(3), pp.385-393. [53] T. Tsuchiyama, Y. Ono, S. Takaki, Microstructure Control for Toughening a High Carbon Martensitic Stainless Steel, ISIJ International ,40(Suppl),2000, pp.184-188. [54] C.G.D. Andrés, G. Caruana, L.F. Alvarez, Control of M23C6 Carbides in 0.45C-13Cr Martensitic Stainless Steel by means of Three Representative Heat Treatment Parameters, Materials Science and Engineering: A , 241(1-2), 1998, pp.211-215. [55] D.S. Leem, Y.D. Lee, J.H. Jun, C.S. Choi, Amount of Retained Austenite at Room Temperature after Reverse Transformation of Martensite to Austenite in an Fe-13%Cr-7%Ni-3%Si Martensitic Stainless Steel, Scripta Materialia, 45(7), 2001, pp.767-772. [56] W.J. Kaluba, T. Kaluba, R. Tillard, The Austenitizing Behaviour of High-Nitrogen Martensitic Stainless Steels, Scripta Materialia, 41(12),1999, pp.1289-1293. [57] C.G.D. Andrés, L.F. Álvarez, V. López, J.A. Jiménez , Effects of Carbide-Forming Elements on the Response to Thermal Treatment of the X45Cr13 Martensitic Stainless Steel, Journal of Materials Science, 33(16),1998, pp.4095-4100. [58]. C.G.D. Andrés, L.F. Álvarez, V. López, Continuous Cooling Transformation in Martensitic Stainless Steels, ISIJ International, 34(6), 1994, pp.516-521. [59] M.C. Tsai, C.S. Chiou, J.S. Du, J.R. Yang, Phase Transformation in AISI 410 Stainless Steel. Materials Science and Engineering: A, 332(1-2), 2002, pp.1-10 [60] G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Materials Park, 2005. [61] A.J. Sedriks, O.S. Zaroog, Corrosion of Stainless Steels, Encyclopedia of Materials: Science and Technology, 2nd ed, Elsevier Science Ltd,2001, pp.1707-1709. [62] A. Dalmau, C. Richard, A. Igual – Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribocorrosion Appraisal, Tribology International, 121, 2018, pp.167-179. [63] D.M. Stefanescu , ASM Handbook, Volume 15: Casting, ASM International, Vol 9 ,1988. [64] W.H. Sutton, G.E. Maurer, Influence of VIM Crucible Composition on the Con-Metallic Content of an Advanced Hafnium Bearing Nickel-Base Superalloy, 6th Int. Vac. Met. Conf., San Diego, Colifornia ,1979. [65] O. Winkler and R. Bakish, Vacuum Metallurgy, Amsterdam, New York, Elsevier Pub. Co, 1971. [66] S. M. Abbasi, A. Shokuhfar, Improvement of Mechanical Properties of Cr-Ni-Mo-Cu-Ti Stainless Steel With Addition of Vanadium , Journal of Iron and Steel Research, International, 14(6), 2007, pp.74-78. [67] M.H. Ras, P.C. Pistorius , Possible Mechanisms for the Improvement by Vanadium of the Pitting Corrosion Resistance of 18% Chromium Ferritic Stainless Steel, Corrosion Science, 44(11), 2002, pp.2479-2490. [68] D.B. Park, M.Y. Huh , W.S. Jung , J.Y. Suh, J.H. Shim, S.C. Lee ,Effect of Vanadium Addition on the Creep Resistance of 18Cr9Ni3CuNbN Austenitic Stainless Heat Resistant Steel, Journal of Alloys and Compounds, 574, 2013, pp.532–538. [69] M.A. Amin, N.E. Bagoury, M. Saracoglu, M. Ramadan, Electrochemical and Corrosion Behavior of cast Re-containing Inconel 718 Alloys in Sulphuric Acid Solutions and the Effect of Cl-, International Journal of Electrochemical Science, 9(9), 2014, pp.5352-5374. [70] J. Jiang, Y. Liu, C. Liu, Effect of Forging Ratio on the Microstructure, Mechanical Properties and Abrasive Wear Behavior of a New C-Cr-Mo-V Martensitic Steel, Journal of Materials Research and Technology, 19, 2022, pp.4076-4091.
|