|
[1]M. Cornacchia, K. Ozcan, Y. Zheng and S. Velipasalar, "A Survey on Activity Detection and Classification Using Wearable Sensors", in IEEE Sens. J., vol. 17, no. 2, pp. 386-403, Jan. 2017, 10.1109/JSEN.2016.2628346. [2]Y. Chen and C. Shen, "Performance Analysis of Smartphone-Sensor Behavior for Human Activity Recognition", in IEEE Access, vol. 5, pp. 3095-3110, 2017, 10.1109/ACCESS.2017.2676168. [3]J. Margarito, R. Helaoui, A. M. Bianchi, F. Sartor and A. G. Bonomi, "User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach", in IEEE Trans. Biomed. Eng., vol. 63, no. 4, pp. 788-796, Apr. 2016, 10.1109/TBME.2015.2471094. [4]L. Cantelli, G. Muscato, M. Nunnari and D. Spina, "A Joint-Angle Estimation Method for Industrial Manipulators Using Inertial Sensors", in IEEE ASME Trans. Mechatron., vol. 20, no. 5, pp. 2486-2495, Oct. 2015, 10.1109/TMECH.2014.2385940. [5]N. Tüfek and O. Özkaya, "A Comparative Research on Human Activity Recognition Using Deep Learning", 27th Signal Processing and Communications Applications Conference (SIU), 2019, pp. 1-4, 10.1109/SIU.2019.8806395. [6]A. Jain and V. Kanhangad, "Human Activity Classification in Smartphones Using Accelerometer and Gyroscope Sensors", in IEEE Sens. J., vol. 18, no. 3, pp. 1169-1177, Feb. 2018, 10.1109/JSEN.2017.2782492. [7]N. B. Gaikwad, V. Tiwari, A. Keskar and N. C. Shivaprakash, "Efficient FPGA Implementation of Multilayer Perceptron for Real-Time Human Activity Classification", in IEEE Access, vol. 7, pp. 26696-26706, 2019, 10.1109/ACCESS.2019.2900084. [8]N. Tufek, M. Yalcin, M. Altintas, F. Kalaoglu, Y. Li and S. K. Bahadir, "Human Action Recognition Using Deep Learning Methods on Limited Sensory Data", in IEEE Sens. J., vol. 20, no. 6, pp. 3101-3112, Mar. 2020, 10.1109/JSEN.2019.2956901. [9]A. S. A. Sukor, A. Zakaria and N. A. Rahim, "Activity recognition using accelerometer sensor and machine learning classifiers", IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), 2018, pp. 233-238, 10.1109/CSPA.2018.8368718. [10]S.-M. Lee, S. M. Yoon and H. Cho, "Human activity recognition from accelerometer data using Convolutional Neural Network", IEEE International Conference on Big Data and Smart Computing (BigComp), 2017, pp. 131-134, 10.1109/BIGCOMP.2017.7881728. [11]T. Zebin, P. J. Scully and K. B. Ozanyan, "Human activity recognition with inertial sensors using a deep learning approach", IEEE SENSORS, 2016, pp. 1-3, 10.1109/ICSENS.2016.7808590. [12]W. Xu, Y. Pang, Y. Yang and Y. Liu, "Human Activity Recognition Based On Convolutional Neural Network", 24th International Conference on Pattern Recognition (ICPR), 2018, pp. 165-170, 10.1109/ICPR.2018.8545435. [13]H. Zhang, Z. Xiao, J. Wang, F. Li and E. Szczerbicki, "A Novel IoT-Perceptive Human Activity Recognition (HAR) Approach Using Multihead Convolutional Attention", in IEEE Internet of Things J., vol. 7, no. 2, pp. 1072-1080, Feb. 2020, 10.1109/JIOT.2019.2949715. [14]T. Zebin, P. J. Scully, N. Peek, A. J. Casson and K. B. Ozanyan, "Design and Implementation of a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity Recognition", in IEEE Access, vol. 7, pp. 133509-133520, 2019, 10.1109/ACCESS.2019.2941836. [15]K. Xia, J. Huang and H. Wang, "LSTM-CNN Architecture for Human Activity Recognition", in IEEE Access, vol. 8, pp. 56855-56866, 2020, 10.1109/ACCESS.2020.2982225. [16]Prospective Studies Collaboration., "Age-specific relevance of usual blood pressure to vascular mortality: A meta-analysis of individual data for one million adults in 61 prospective studies", The Lancet, vol. 360, no. 9349, pp. 1903-1913, Dec. 2002, 10.1016/s0140-6736(02)11911-8. [17]M. Panwar, A. Gautam, D. Biswas and A. Acharyya, "PP-Net: A Deep Learning Framework for PPG-Based Blood Pressure and Heart Rate Estimation", in IEEE Sens. J., vol. 20, no. 17, pp. 10000-10011, Sept. 2020, 10.1109/JSEN.2020.2990864. [18]A. Gaurav, M. Maheedhar, V. N. Tiwari and R. Narayanan, "Cuff-less PPG based continuous blood pressure monitoring — A smartphone based approach", 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 607-610, 10.1109/EMBC.2016.7590775. [19]M. Kachuee, M. M. Kiani, H. Mohammadzade and M. Shabany, "Cuffless Blood Pressure Estimation Algorithms for Continuous Health-Care Monitoring", in IEEE Trans. Biomed. Eng., vol. 64, no. 4, pp. 859-869, Apr. 2017, 10.1109/TBME.2016.2580904. [20]S. C. Gao, P. Wittek, L. Zhao and W. J. Jiang, "Data-driven estimation of blood pressure using photoplethysmographic signals", 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 766-769, 10.1109/EMBC.2016.7590814. [21]Zhang, Yue and Zhimeng Feng, "A SVM method for continuous blood pressure estimation from a PPG signal", 9th International Conference on Machine Learning and Computing., 2017, pp. 128-132, 10.1145/3055635.3056634. [22]K. Duan, Z. Qian, M. Atef and G. Wang, "A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography", 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2016, pp. 6385-6388, 10.1109/EMBC.2016.7592189. [23]S. S. Mousavi, M. Firouzmand, M. Charmi, M. Hemmati, M. Moghadam and Y. Ghorbani, "Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method", Biomed. Signal Process. Control, vol. 47, Jun. 2019, pp. 196-206, 10.1016/j.bspc.2018.08.022. [24]T. Athaya and S. Choi, "An estimation method of continuous non-invasive arterial blood pressure waveform using photoplethysmography: A U-Net architecture-based approach", Sensors, val.21, no. 5, pp. 1867, Mar. 2021, 10.3390/s21051867. [25]P. Li and T. -M. Laleg-Kirati, "Central Blood Pressure Estimation From Distal PPG Measurement Using Semiclassical Signal Analysis Features", in IEEE Access, vol. 9, pp. 44963-44973, 2021, 10.1109/ACCESS.2021.3065576. [26]J. F.-W. Chan et al., "A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster", The Lancet, vol. 395, no. 10223, pp. 514-523, Feb. 2020, 10.1016/S0140-6736(20)30154-9. [27]N. ZHU et al., "A novel coronavirus from patients with pneumonia in China", N. Engl. J. Med., Feb. 2020, 10.1056/NEJMoa2001017. [28]M. Hammad, A. M. Iliyasu, A. Subasi, E. S. L. Ho and A. A. A. El-Latif, "A Multitier Deep Learning Model for Arrhythmia Detection", in IEEE Trans. Instrum. Meas., vol. 70, pp. 1-9, 2021, Art no. 2502809, 10.1109/TIM.2020.3033072. [29]W. Liu, X. Liu, H. Li, M. Li, X. Zhao and Z. Zhu, "Integrating Lung Parenchyma Segmentation and Nodule Detection With Deep Multi-Task Learning", in IEEE J. Biomed. Health Inform., vol. 25, no. 8, pp. 3073-3081, Aug. 2021, 10.1109/JBHI.2021.3053023. [30]H. Hu, Q. Li, Y. Zhao and Y. Zhang, "Parallel Deep Learning Algorithms With Hybrid Attention Mechanism for Image Segmentation of Lung Tumors", in IEEE Trans. Ind. Informat., vol. 17, no. 4, pp. 2880-2889, Apr. 2021, 10.1109/TII.2020.3022912. [31]D. I. Apostoloplulos and A. T. Mpesiana, "Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks", Phys. Eng. Sci. Med., vol. 43, no. 2, pp. 635-640, Jun. 2020, 10.1007/s13246-020-00865-4. [32]F. Ucar and D. Korkmaz, "COVIDiagnosis-net: Deep Bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images", Med. Hypotheses, vol. 140, Jul. 2020, 10.1016/j.mehy.2020.109761. [33]S. Minaee, R. Kafieh, M. Sonka, S. Yazdani and G. J. Soufi, "Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning", Med. Image Anal., vol. 65, Oct. 2020, 10.1016/j.media.2020.101794. [34]M. Toğaçar, B. Ergen and Z. Cömert, "COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches", Comput. Biol. Med., vol. 121, Jun. 2020, 10.1016/j.compbiomed.2020.103805. [35]J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6517-6525, 10.1109/CVPR.2017.690. [36]T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim and U. Rajendra Acharya, “Automated detection of COVID-19 cases using deep neural networks with X-ray images", Comput. Biol. Med., vol. 121, Jun. 2020, 10.1016/j.compbiomed.2020.103792. [37]E. H. Chowdhury et al., "Can AI Help in Screening Viral and COVID-19 Pneumonia? ", in IEEE Access, vol. 8, pp. 132665-132676, 2020, 10.1109/ACCESS.2020.3010287. [38]E. F. Ohata et al., "Automatic detection of COVID-19 infection using chest X-ray images through transfer learning", in IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 239-248, Jan. 2021, 10.1109/JAS.2020.1003393. [39]A. Gupta, Anjum, S. Gupta and R. Katarya "InstaCovNet-19: A deep learning classification model for the detection of COVID-19 patients using chest X-ray", Appl. Soft Comput., vol. 99, 2020, 10.1016/j.asoc.2020.106859. [40]A. I. Khan, J. Shah and M. Bhat, "CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest X-ray images", Comput. Methods Programs Biomed., vol. 196, Nov. 2020, 10.1016/j.cmpb.2020.105581. [41]R. Bhadra and S. Kar, "Covid Detection from CXR Scans using Deep Multi-layered CNN", 2020 IEEE Bombay Section Signature Conference (IBSSC), 2020, pp. 214-218, 10.1109/IBSSC51096.2020.9332210. [42]M. R. Karim, T. Döhmen, M. Cochez, O. Beyan, D. Rebholz-Schuhmann and S. Decker, "DeepCOVIDExplainer: Explainable COVID-19 Diagnosis from Chest X-ray Images", 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2020, pp. 1034-1037, 10.1109/BIBM49941.2020.9313304. [43]A. Abbas, M.M. Abdelsamea and M. M. Gaber, "Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network", Appl. Intell., vol. 51, pp. 854-864, Sept. 2021, 10.1007/s10489-020-01829-7. [44]A. R. Nallabasannagari, M. Reddiboina, R. Seltzer, T. Zeffiro, A. Sharma and M. Bhandari, "All Data Inclusive, Deep Learning Models to Predict Critical Events in the Medical Information Mart for Intensive Care III Dataset (MIMIC III) ", 2020, [Online] Available: https://arxiv.org/abs/2009.01366 (2021). [45]G. Harerimana, J. W. Kim and B. Jang, "A deep attention model to forecast the Length Of Stay and the in-hospital mortality right on admission from ICD codes and demographic data", J. Biomed. Inform., vol. 118, Jun. 2021, 10.1016/j.jbi.2021.103778. [46]S. Wang, M. B. A. McDermott, G. Chauhan, M. Ghassemi, M. C. Hughes and T. Naumann, "Mimic-extract : A data extraction preprocessing and representation pipeline for mimic-iii", Proceedings of the ACM Conference on Health Inference and Learning, 2020, pp. 222235, 10.1145/3368555.3384469. [47]H. Harutyunyan, H. Khachatrian, D.C. Kale, G. V. Steeg and A. Galstyan, "Multitask learning and benchmarking with clinical time series data", Sci. Data, vol. 6, no. 96, Jun. 2019, 10.1038/s41597-019-0103-9. [48]B. Bardak and M. Tan, "Improving clinical outcome predictions using convolution over medical entities with multimodal learning", Artif. Intell. Med., vol. 117, Jul. 2021, 10.1016/j.artmed.2021.102112. [49]R. Poppe, "Vision-Based Human Motion Analysis: An Overview", Comput. Vis. Image Underst., vol. 108, pp. 4-18, Oct.-Nov. 2007, 10.1016/j.cviu.2006.10.016. [50]J.-L. Reyes-Ortiz, L. Oneto, A. Ghio, A. Samà, D. Anguita and X. Parra, "Human activity recognition on smartphones with awareness of basic activities and postural transitions", Artificial Neural Networks and Machine Learning-ICANN 2014-International Conference on Artificial Neural Networks. Proceedings, 2014, pp. 177-184, 10.1007/978-3-319-11179-7_23. [51]N. Davies, D. P. Siewiorek and R. Sukthankar, "Activity-Based Computing", in IEEE Pervasive Computing, vol. 7, no. 2, pp. 20-21, Apr.-Jun. 2008, 10.1109/MPRV.2008.26. [52]N. Ravi, N. Dandekar, P. Mysore and M. L. Littman, "Activity recognition from accelerometer data", Proc. 20th Nat. Conf. Artif. Intell., 2005, pp. 1541-1546, vol. 5, no. 2005. [53]D. Nachman et al., "Comparing blood pressure measurements between a photoplethysmography-based and a standard cuff-based manometry device", Sci. Rep., vol. 10, Dec. 2020, 10.1038/s41598-020-73172-3. [54]D. Castaneda, A. Esparza, M. Ghamari, C. Soltanpur and H. Nazeran1, "A review on wearable photoplethysmography sensors and their potential future applications in health care", Int. J. Biosensors Bioelectron., vol. 4, no. 4, pp. 195-202, Aug. 2018, 10.15406/ijbsbe.2018.04.00125. [55]M. Leone, P. Asfar, P. Radermacher, J.-L. Vincent and C. Martin, "Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature", Crit. Care, vol. 19, pp. 101, Dec. 2015, 10.1186/s13054-015-0794-z. [56]W-J. Guan et al., "Clinical Characteristics of Coronavirus Disease 2019 in China", N. Engl. J. Med., vol. 382, no. 18, pp. 1708-1720, Apr. 2020, 10.1056/NEJMoa2002032. [57]T. Ai et al., "Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases", Radiology, vol. 296, no. 2, pp. E32-E40, Feb. 2020, 10.1148/radiol.2020200642. [58]G. D. Rubin et al., "The role of chest imaging in patient management during the COVID-19 pandemic: A multinational consensus statement from the fleischner society", Radiology, vol. 296, no. 1, pp. 172-180, Apr. 2020, 10.1148/radiol.2020201365. [59]H. Y. F. Wong et al., “Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19”, Radiology, vol. 296, no. 2, pp. E72-E78, Mar. 2020, 10.1148/radiol.2020201160. [60]A. Bernheim et al., "Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection", Radiology, vol. 295, no. 3, pp. 685-691, Feb. 2020, 10.1148/radiol.2020200463. [61]S. Purushotham, C. Meng, Z. Che and Y. Liu, "Benchmarking deep learning models on large healthcare datasets", J. Biomed. Informat., vol. 83, pp. 112-134, Jul. 2018, 10.1016/j.jbi.2018.04.007. [62]P. J. Huber, "Robust estimation of a location parameter", Ann. Math. Statist., vol. 35, no. 1, pp. 73-101, Mar. 1964, 10.1214/aoms/1177703732. [63]T. Lin, P. Goyal, R. Girshick, K. He and P. Dollár, "Focal Loss for Dense Object Detection", in IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 318-327, Feb. 2020, 10.1109/TPAMI.2018.2858826. [64]C. Olah, "Understanding LSTM Networks", 2015, [Online]. Available: https://colah.github.io/posts/2015-08-Understanding-LSTMs (2021). [65]N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, "SMOTE: Synthetic Minority Over-sampling Technique", J. Artif. Intell. Res., vol. 16, pp. 321-357, Jun. 2002, 10.1613/jair.953. [66]A. Ishaq et al., "Improving the Prediction of Heart Failure Patients’ Survival Using SMOTE and Effective Data Mining Techniques", in IEEE Access, vol. 9, pp. 39707-39716, 2021, 10.1109/ACCESS.2021.3064084. [67]B. Baesens, S. Höppner, I. Ortner and T. Verdonck, "robROSE: A robust approach for dealing with imbalanced data in fraud detection", Stat. Methods Appl., vol. 30, pp. 841-861, Jun. 2021, 10.1007/s10260-021-00573-7. [68]A. Awad, M. Bader-El-Den, J. McNicholas, J. Briggs and Y. El-Sonbaty, "Predicting hospital mortality for intensive care unit patients: Time-series analysis", Health Informatics J., vol. 26, pp. 1043-1059, Jun. 2020, 10.1177/1460458219850323. [69]K. Shelley and S. Shelley, "Pulse oximeter waveform: photoelectric plethysmography", Clinical Monitoring Carol Lake R. Hines and C. Blitt Eds.: WB Saunders Company, 2001, pp. 420-428. [70]K. Nakajima, T. Tamura and H. Miike, "Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique", Med. Eng. Phys., vol. 18, no. 5, pp. 365-372, Jul. 1996, 10.1016/1350-4533(95)00066-6. [71]S. Rhee, B.-H. Yang and H. H. Asada, "Artifact-resistant power-efficient design of finger-ring plethysmographic sensors", in IEEE Trans. Biomed. Eng., vol. 48, no. 7, pp. 795-805, Jul. 2001, 10.1109/10.930904. [72]A. M. Reza, "Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement", J. VLSI signal process. syst. signal image video technol. (Online), vol. 38, pp. 35-44, 2004, 10.1023/B:VLSI.0000028532.53893.82. [73]D. Anguita, A. Ghio, L. Oneto, X. Parra and J. L. Reyes-Ortiz, "A public domain dataset for human activity recognition using smartphones", 21th European Symposium on Artificial Neural Networks (ESANN), 2013, pp. 437-442. [74]C. -T. Yen, J. -X. Liao and Y. -K. Huang, "Human Daily Activity Recognition Performed Using Wearable Inertial Sensors Combined With Deep Learning Algorithms", in IEEE Access, vol. 8, pp. 174105-174114, 2020, 10.1109/ACCESS.2020.3025938. [75]C. -T. Yen and J. -D. Lin, "Human body activity recognition using wearable inertial sensors integrated with a feature extraction–based machine-learning classification algorithm", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Jul. 2020, 0.1177/0954405420937894. [76]R. Mutegeki and D. S. Han, "A CNN-LSTM Approach to Human Activity Recognition", 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2020, pp. 362-366, 10.1109/ICAIIC48513.2020.9065078. [77]S. Deep and X. Zheng, "Hybrid Model Featuring CNN and LSTM Architecture for Human Activity Recognition on Smartphone Sensor Data", 20th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2019, pp. 259-264, 10.1109/PDCAT46702.2019.00055. [78]S. Yu and L. Qin, "Human Activity Recognition with Smartphone Inertial Sensors Using Bidir-LSTM Networks", 3rd International Conference on Mechanical, Control and Computer Engineering (ICMCCE), 2018, pp. 219-224, 10.1109/ICMCCE.2018.00052. [79]S. Dhanraj, S. De and D. Dash, "Efficient Smartphone-Based Human Activity Recognition Using Convolutional Neural Network", 2019 International Conference on Information Technology (ICIT), 2019, pp. 307-312, 10.1109/ICIT48102.2019.00061. [80]X. Yang, Y. Lyu, Y. Sun and C. Zhang, "A New Residual Dense Network for Dance Action Recognition From Heterogeneous View Perception", Front. Neurorobot., vol. 15, pp. 89, Jun. 2021, doi: 10.3389/fnbot.2021.698779. [81]D. Thakur and S. Biswas, "Feature fusion using deep learning for smartphone based human activity recognition", Int. j. inf. tecnol., vol. 13, pp. 1615-1624, Jun. 2021, 10.1007/s41870-021-00719-6. [82]N. Dua, S.N. Singh and V.B. Semwal, "Multi-input CNN-GRU based human activity recognition using wearable sensors", Computing, vol. 103, pp. 1461-1478, Mar. 2021, 10.1007/s00607-021-00928-8. [83]O. Nafea, W. Abdul, G. Muhammad and M. Alsulaiman, "Sensor-Based Human Activity Recognition with Spatio-Temporal Deep Learning", Sensors, vol. 21, no. 6, pp. 2141, Mar. 2021, 10.3390/s21062141. [84]C. Avilés-Cruz, A. Ferreyra-Ramírez, A. Zúñiga-López and J. Villegas-Cortéz, "Coarse-fine convolutional deep-learning strategy for human activity recognition", Sensors, vol. 19, no. 7, pp. 1556, Mar. 2019, 10.3390/s19071556. [85]A. L. Goldberger et al., "PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals", Circulation, vol. 101, no. 23, pp. e215-e220, Jun. 2000, 10.1161/01.CIR.101.23.e25. [86]M. Kachuee, M. M. Kiani, H. Mohammadzade and M. Shabany, "Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time", IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 1006-1009, 10.1109/ISCAS.2015.7168806. [87]A. Pachauri and M. Bhuyan, "ABP peak detection using energy analysis technique", International Conference on Multimedia, Signal Processing and Communication Technologies, 2011, pp. 36-39, 10.1109/MSPCT.2011.6150514. [88]S.A. Rankawat and R. Dubey, "Robust heart rate estimation from multimodal physiological signals using beat signal quality index based majority voting fusion method", Biomed. Signal Process. Control, vol. 33, pp. 201-212, Mar. 2017, 10.1016/j.bspc.2016.12.004. [89]E. Khan, F. Al Hossain, S. Z. Uddin, S. K. Alam and M. K. Hasan, "A Robust Heart Rate Monitoring Scheme Using Photoplethysmographic Signals Corrupted by Intense Motion Artifacts", in IEEE Trans. Biomed. Eng., vol. 63, no. 3, pp. 550-562, Mar. 2016, 10.1109/TBME.2015.2466075. [90]A. Temko, "Accurate Heart Rate Monitoring During Physical Exercises Using PPG", in IEEE Trans. Biomed. Eng., vol. 64, no. 9, pp. 2016-2024, Sept. 2017, 10.1109/TBME.2017.2676243. [91]K. R. Arunkumar and M. Bhaskar, "Heart rate estimation from photoplethysmography signal for wearable health monitoring devices", Biomed. Signal Process. Control, vol. 50, pp. 1-9, Apr. 2019, 10.1016/j.bspc.2019.01.021. [92]D. Biswas et al., "CorNET: Deep Learning Framework for PPG-Based Heart Rate Estimation and Biometric Identification in Ambulant Environment", in IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 2, pp. 282-291, Apr. 2019, 10.1109/TBCAS.2019.2892297. [93]K. R. Arunkumar and M. Bhaskar, "Robust De-Noising Technique for Accurate Heart Rate Estimation Using Wrist-Type PPG Signals", in IEEE Sens. J., vol. 20, no. 14, pp. 7980-7987, Jul. 2020, 10.1109/JSEN.2020.2982540. [94]H. Chung, H. Ko, H. Lee and J. Lee, "Deep Learning for Heart Rate Estimation From Reflectance Photoplethysmography With Acceleration Power Spectrum and Acceleration Intensity", in IEEE Access, vol. 8, pp. 63390-63402, 2020, 10.1109/ACCESS.2020.2981956. [95]D. DeMers and D. Wachs, "Physiology, Mean Arterial Pressure", in StatPearls [Internet], Treasure Island, FL, USA: StatPearls Publishing, 2021, [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK538226/ (2021). [96]Q. Zhang, C. Ge and Y. Xin, "Estimating Heart Rate during Steady-State Activities and Transitions Based on Signal of PPG and ACC", IEEE International Conference on Mechatronics and Automation (ICMA), 2020, pp. 279-283, 10.1109/ICMA49215.2020.9233764. [97]S. Puranik and A. W. Morales, "Heart Rate Estimation of PPG Signals With Simultaneous Accelerometry Using Adaptive Neural Network Filtering", in IEEE Trans. Consum. Electron., vol. 66, no. 1, pp. 69-76, Feb. 2020, 10.1109/TCE.2019.2961263. [98]M. Risso et al., "Robust and Energy-Efficient PPG-Based Heart-Rate Monitoring", IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5, 10.1109/ISCAS51556.2021.9401282. [99]K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-778, 10.1109/CVPR.2016.90. [100]K. He, X. Zhang, S. Ren and J. Sun, "Identity Mappings in Deep Residual Networks", Springer, Cham, 2016, pp. 630-645, vol. 9908, 10.1007/978-3-319-46493-0_38. [101]G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, "Densely Connected Convolutional Networks", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261-2269, 10.1109/CVPR.2017.243. [102]A. E. W. Johnson et al., "MIMIC-III, a freely accessible critical care dataset", Sci. Data, vol. 3, pp. 160035, May 2016, 10.1038/sdata.2016.35. [103]T. Pollard, "MIT-LCP/mimic-code: MIMIC-III v1.4", Zenodo, Jul. 2017, 10.5281/zenodo.821872.
|